Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5): 2097-2119.doi: 10.1007/s42967-025-00491-5
• ORIGINAL PAPERS • Previous Articles
Shi-Ping Tang1, Yu-Mei Huang2
Received:2023-12-01
Revised:2024-07-06
Accepted:2024-07-13
Online:2025-06-17
Published:2025-06-17
Contact:
Yu-Mei Huang,E-mail:huangym@lzu.edu.cn
E-mail:huangym@lzu.edu.cn
Supported by:Shi-Ping Tang, Yu-Mei Huang. A DTHSS-τ Preconditioner for the Discretized Linear Systems of Space-Fractional Diffusion Equations[J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 2097-2119.
| [1] Bai, Z.-Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl. Math. 283, 71-78 (2015) [2] Bai, Z.-Z.: On SSOR-like preconditioners for non-Hermitian positive definite matrices. Numer. Linear Algebra Appl. 23, 37-60 (2016) [3] Bai, Z.-Z.: Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts. Numer. Linear Algebra Appl. 25, 2116 (2018) [4] Bai, Z.-Z.: Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations. Numer. Linear Algebra Appl. 25, 1-18 (2018) [5] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603-626 (2003) [6] Bai, Z.-Z., Lu, K.-Y.: Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations. J. Comput. Phys. 404, 109-117 (2020) [7] Bai, Z.-Z., Lu, K.-Y.: On regularized Hermitian splitting iteration methods for solving discretized almost-isotropic spatial fractional diffusion equations. Numer. Linear Algebra Appl. 27, 1-21 (2020) [8] Bai, Z.-Z., Lu, K.-Y., Pan, J.-Y.: Diagonal and Toeplitz splitting itetation methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24, 2093 (2017) [9] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [10] Bini, D., Benedetto, F.: A new preconditioner for the parallel solution of positive definite Toeplitz systems. In: Proceedings of 2nd Annual ACM Symposium on Parallel Algorithms and Architecture (SPAA 90), pp. 220-223. ACM Press (1990) [11] Bu, W., Tang, Y.-F., Yang, J.-Y.: Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276, 26-38 (2014) [12] Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 8, 5096-5103 (2001) [13] Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262-279 (2016) [14] Du, N., Wang, H., Liu, W.-B.: A fast gradient projection method for a constrained fractional optimal control. J. Sci. Comput. 68, 1-20 (2016) [15] Feng, L.-B., Zhuang, P., Liu, F.-W., Turner, I.: Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl. Math. Comput. 257, 52-65 (2015) [16] Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. 8, 333-349 (2005) [17] Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9, 323-341 (2006) [18] Kirchner, J.W., Feng, X.-H., Neal, C.: Fractal stream chemistry and its implications for contaminant transport in vatchments. Nature 403, 524-527 (2000) [19] Kreer, M., Kizilersu, A., Thomas, A.W.: Fractal stream chemistry and its implications for contaminant transport in catchments. Stat. Probab. Lett. 84, 27-32 (2014) [20] Lei, X.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715-725 (2013) [21] Lin, F.-R., Yang, S.-W., Jin, X.-Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109-117 (2014) [22] Lu, K.-Y.: Diagonal and circulant or skew-circulant splitting preconditioners for spatial fractional diffsuion eqautions. Comput. Appl. Math. 37, 4196-4218 (2018) [23] Lu, K.-Y., Xie, D.-X., Chen, F., Muratova, G.V.: Dominant Hermitian splitting iteration method for discrete space-fractional diffusion equations. Appl. Numer. Math. 164, 1528 (2021) [24] Lu, X., Fang, Z.-W., Sun, H.-W.: Splitting preconditioning based on sine transform for time dependent Riesz space fractional diffusion equations. J. Appl. Math. Comput. 66, 673-700 (2020) [25] Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2004) [26] Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65-77 (2004) [27] Ng, M.K., Pan, J.-Y.: Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices. SIAM J. Sci. Comput. 32, 1442-1464 (2010) [28] Podlubny, I.: Fractional Differential Equationals. Academic Press, San Diego (1999) [29] Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749-755 (2002) [30] Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B. Condens. Matter Phys. 27, 273-275 (2002) [31] Serra, S.: Superlinear PCG methods for symmetric Toeplitz systems. Math. Comput. 648, 793-803 (1999) [32] Shao, X.-H., Kang, C.-B.: A preconditioner based on sine transform for space fractional diffusion equations. Appl. Numer. Math. 178, 248-261 (2022) [33] Sokolv, I.M., Klafter, J., Blumen, A.: Fractional kinetics. Phys. Today 55, 48-54 (2002) [34] Tang, S.-P., Huang, Y.-M.: A DRCS preconditioning iterative method for a constrained fractional optimal control problem. Comput. Appl. Math. 40, 266 (2021) [35] Tang, S.-P., Huang, Y.-M.: A matrix splitting preconditioning method for solving the discretized tempered fractional diffusion equations. Numer. Algorithms 92, 1311-1333 (2023) [36] Tian, W.-Y., Zhou, H., Deng, W.-H.: A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84, 1703-1727 (2015) [37] Upadhyay, R.K., Mondal, A.: Dynamics of fractional order modified Morris-Lecar neural model. Netw. Biol. 5, 113-136 (2015) [38] Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49-57 (2013) [39] Zhang, H., Jiang, X.-Y., Zeng, F.-H., Karniadakis, G.E.: A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations. J. Comput. Phys. 405, 109141 (2020) [40] Zhao, X., Hu, X.-Z., Cai, W., Karniadakis, G.E.: Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput. Methods Appl. Mech. 325, 56-76 (2017) |
| [1] | Qin-Qin Shen, Geng-Chen Yang, Chen-Can Zhou. Convergence Analysis of the Projected SOR Iteration Method for Horizontal Linear Complementarity Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1617-1638. |
| [2] | Fang Chen, Shu-Ru He. Practical Restrictively Preconditioned Conjugate Gradient Methods for a Class of Block Two-by-Two Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1639-1651. |
| [3] | Xu Li, Jian-Sheng Feng. Parameterized QHSS Iteration Method and Its Variants for Non-Hermitian Positive Definite Linear Systems of Strong Skew-Hermitian Parts [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1665-1683. |
| [4] | Bo Wu. The Parameterized Augmentation Block Preconditioner for Nonsymmetric Saddle Point Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1704-1723. |
| [5] | Jin-Feng Mao, Fang Chen. On Multi-step Partially Randomized Extended Kaczmarz Method for Solving Large Sparse Inconsistent Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1724-1743. |
| [6] | Lu-Xin Wang, Yang Cao, Qin-Qin Shen. Two Variants of Robust Two-Step Modulus-Based Matrix Splitting Iteration Methods for Mixed-Cell-Height Circuit Legalization Problem [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1769-1790. |
| [7] | Yan-Xia Dai, Ren-Yi Yan, Ai-Li Yang. Minimum Residual BAS Iteration Method for Solving the System of Absolute Value Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1815-1825. |
| [8] | Yu-Hong Ran, Qian-Qian Wu. An ADI Iteration Method for Solving Discretized Two-Dimensional Space-Fractional Diffusion Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1848-1860. |
| [9] | Rong Ma, Yu-Jiang Wu, Lun-Ji Song. Modified Newton-PAGSOR Method for Solving Nonlinear Systems with Complex Symmetric Jacobian Matrices [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1880-1906. |
| [10] | Li Wang, Yi Xiao, Yu-Li Zhu, Yi-Bo Wang. Modified Alternately Linearized Implicit Iteration Methods for Nonsymmetric Coupled Algebraic Riccati Equation [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1923-1939. |
| [11] | Chao Sun, Xiao-Xia Guo. A Novel Greedy Block Gauss-Seidel Method for Solving Large Linear Least-Squares Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1959-1976. |
| [12] | Ke-Yu Gao, Chen-Liang Li. Modulus-Based Cascadic Multigrid Method for Quasi-variational Inequality Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1977-1992. |
| [13] | Ran-Ran Li, Hao Liu. On Cyclic Block Coordinate Descent Method for Solving Large Inconsistent Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1993-2006. |
| [14] | Sheng-Zhong Song, Zheng-Da Huang, Bo-Han Zhang. An Improved SSOR-Like Preconditioner for the Non-Hermitian-Positive Definite Linear System with a Dominant Skew-Hermitian Part [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 2080-2096. |
| [15] | Zhao-Zheng Liang, Jun-Lin Tian, Hong-Yi Wan. A Note on Chebyshev Accelerated PMHSS Iteration Method for Block Two-by-Two Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1242-1263. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||