[1] Bai, Z.-Z., Liu, X.-G.: On the Meany inequality with applications to convergence analysis of several row-action iteration methods. Numer. Math. 124, 215-236 (2013) [2] Bai, Z.-Z., Wang, L.: On multi-step randomized extended Kaczmarz method for solving large sparse inconsistent linear systems. Appl. Numer. Math. 192, 197-213 (2023) [3] Bai, Z.-Z., Wang, L., Muratova, G.V.: On relaxed greedy randomized augmented Kaczmarz methods for solving large sparse inconsistent linear systems. East Asian J. Appl. Math. 12, 323-332 (2022) [4] Bai, Z.-Z., Wang, L., Wu, W.-T.: On convergence rate of the randomized Gauss-Seidel method. Linear Algebra Appl. 611, 237-252 (2021) [5] Bai, Z.-Z., Wu, W.-T.: On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 40, A592-A606 (2018) [6] Bai, Z.-Z., Wu, W.-T.: On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems. Linear Algebra Appl. 578, 225-250 (2019) [7] Bai, Z.-Z., Wu, W.-T.: On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer. Linear Algebra Appl. 26, e2237 (2019) [8] Bai, Z.-Z., Wu, W.-T.: On greedy randomized augmented Kaczmarz method for solving large sparse inconsistent linear systems. SIAM J. Sci. Comput. 43, A3892-A3911 (2021) [9] Bai, Z.-Z., Wu, W.-T.: Randomized Kaczmarz iteration methods: algorithmic extensions and convergence theory. Jpn. J. Ind. Appl. Math. 40, 1421-1443 (2023) [10] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) [11] Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1-25 (2011) [12] Du, K., Si, W.-T., Sun, X.-H.: Randomized extended average block Kaczmarz for solving least squares. SIAM J. Sci. Comput. 42, A3541-A3559 (2020) [13] Hefny, A., Needell, D., Ramdas, A.: Rows versus columns: randomized Kaczmarz or Gauss-Seidel for ridge regression. SIAM J. Sci. Comput. 39, S528-S542 (2017) [14] Huang, D.-P., Zhang, L.: Least squares support vector machines with model uncertainty. Pattern Recognit. 78, 61-74 (2018) [15] Ivanov, A.A., Zhdanov, A.I.: Kaczmarz algorithm for Tikhonov regularization problem. Appl. Math. E-Notes 13, 270-276 (2013) [16] Kaczmarz, S.: Angen\begin{document}$ \ddot{{\rm a}} $\end{document}herte aufl\begin{document}$ \ddot{{\rm o}} $\end{document}sung von systemen linearer gleichungen. Bull. Int. Acad. Pol. Sic. Let. Cl. Sci. Math. Nat. Ser. A Sci. Math. 35, 355-357 (1937) [17] Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35, 641-654 (2010) [18] Li, R.-R., Liu, H.: On randomized partial block Kaczmarz method for solving huge linear algebraic systems. Comput. Appl. Math. 41, 1-10 (2022) [19] Liu, Y., Gu, C.-Q.: Variant of greedy randomized Kaczmarz for ridge regression. Appl. Numer. Math. 143, 223-246 (2019) [20] Lu, Z.-S., Xiao, L.: On the complexity analysis of randomized block-coordinate descent methods. Math. Program. 152, 615-642 (2015) [21] Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl. 36, 1590-1604 (2015) [22] Necoara, I., Nesterov, Y., Glineur, F.: Random block coordinate descent methods for linearly constrained optimization over networks. J. Optim. Theory Appl. 173, 227-254 (2017) [23] Needell, D., Zhao, R., Zouzias, A.: Randomized block Kaczmarz method with projection for solving least squares. Linear Algebra Appl. 484, 322-343 (2015) [24] Nesterov, Y., Stich, S.U.: Efficiency of the accelerated coordinate descent method on structured optimization problems. SIAM J. Optim. 27, 110-123 (2017) [25] Popa, C.: Least-squares solution of overdetermined inconsistent linear systems using Kaczmarz’s relaxation. Int. J. Comput. Math. 55, 79-89 (1995) [26] Popa, C.: Extensions of block-projections methods with relaxation parameters to inconsistent and rank-deficient least-squares problems. BIT Numer. Math. 38, 151-176 (1998) [27] Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144, 1-38 (2014) [28] Ruhe, A.: Numerical aspects of Gram-Schmidt orthogonalization of vectors. Linear Algebra Appl. 52, 591-601 (1983) [29] Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15, 262-278 (2009) [30] Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problem. Wiley, New York (1977) [31] Wu, N.-C., Xiang, H.: Projected randomized Kaczmarz methods. J. Comput. Appl. Math. 372, 112672 (2020) [32] Wu, W.-T.: On two-subspace randomized extended Kaczmarz method for solving large linear least-squares problems. Numer. Algorithms 89, 1-31 (2022) [33] Zhang, J.-H., Guo, J.-H.: On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems. Appl. Numer. Math. 157, 372-384 (2020) [34] Zouzias, A., Freris, N.M.: Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 34, 773-793 (2013) |