[1] Bai, Z.-Z.: Several splittings for non-Hermitian linear systems. Sci. China Ser. A Math. 51, 1339-1348 (2008) [2] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [3] Bai, Z.-Z., Wang, L.: On multi-step randomized extended Kaczmarz method for solving large sparse inconsistent linear systems. Appl. Numer. Math. 192, 197-213 (2023) [4] Bai, Z.-Z., Wu, W.-T.: On convergence rate of the randomized Kaczmarz method. Linear Algebra Appl. 553, 252-269 (2018) [5] Bai, Z.-Z., Wu, W.-T.: On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 40, A592-A606 (2018) [6] Bai, Z.-Z., Wu, W.-T.: On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Appl. Math. Lett. 83, 21-26 (2018) [7] Bai, Z.-Z., Wu, W.-T.: On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems. Linear Algebra Appl. 578, 225-250 (2019) [8] Bai, Z.-Z., Wu, W.-T.: On greedy randomized augmented Kaczmarz method for solving large sparse inconsistent linear systems. SIAM J. Sci. Comput. 43, A3892-A3911 (2021) [9] Bai, Z.-Z., Wu, W.-T.: Randomized Kaczmarz iteration methods: algorithmic extensions and convergence theory. Jpn. J. Ind. Appl. Math. 40, 1421-1443 (2023) [10] Byrne, C.: A unifed treatment of some iterative algorithms in signal processing and image re-construction. Inverse Prob. 20, 103-120 (2003) [11] Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23, 444-466 (1981) [12] Censor, Y.: Parallel application of block-iterative methods in medical imaging and radiation therapy. Math. Program. 42, 307-325 (1988) [13] Du, K.: Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss-Seidel algorithms. Numer. Linear Algebra Appl. 26, e2233 (2019) [14] Eggermont, P.P.B., Herman, G.T., Lent, A.: Iterative algorithms for large partitioned linear systems, with applications to image reconstruction. Linear Algebra Appl. 40, 37-67 (1981) [15] Eldar, Y.C., Needell, D.: Acceleration of randomized Kaczmarz methods via the Johnson-Lindenstrauss lemma. Numer. Algorithms 58, 163-177 (2011) [16] Feichtinger, H.G., Cenker, C., Mayer, M., Steier, H., Strohmer, T.: New variants of the POCS method using affine subspaces of finite codimension with applications to irregular sampling. Vis. Commun. Image Process. 1992, 299-310 (1818) [17] Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471-481 (1970) [18] Guenther, R.B., Kerber, C.W., Killian, E.K., Smith, K.T., Wagner, S.L.: Reconstruction of objects from radiographs and the location of brain tumors. Proc. Natl. Acad. Sci. 71, 4884-4886 (1974) [19] Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections. Springer, Berlin (2009) [20] Herman, G.T., Davidi, R.: Image reconstruction from a small number of projections. Inverse Prob. 24, 045011 (2008) [21] Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bull. Int. Acad. Polon. Sci. Lett. 35, 355-357 (1937) [22] Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM, Philadelphia, PA (2001) [23] Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35, 641-654 (2010) [24] Liu, Y., Gu, C.-Q.: Variant of greedy randomized Kaczmarz for ridge regression. Appl. Numer. Math. 143, 223-246 (2019) [25] Needell, D.: Randomized Kaczmarz solver for noisy linear systems. BIT Numer. Math. 50, 395-403 (2010) [26] Needell, D., Zhao, R., Zouzias, A.: Randomized block Kaczmarz method with projection for solving least squares. Linear Algebra Appl. 484, 322-343 (2015) [27] Popa, C.: Least-squares solution of overdetermined inconsistent linear systems using Kaczmarz’s relaxation. Int. J. Comput. Math. 55, 79-89 (1995) [28] Popa, C.: Extensions of block-projections methods with relaxation parameters to inconsistent and rank-deficient least-squares problems. BIT 38, 151-176 (1998) [29] Popa, C., Zdunek, R.: Kaczmarz extended algorithm for tomographic image reconstruction from limited data. Math. Comput. Simul. 65, 579-598 (2004) [30] Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15, 262-278 (2009) [31] Zhang, J.-J.: A new greedy Kaczmarz algorithm for the solution of very large linear systems. Appl. Math. Lett. 91, 207-212 (2019) [32] Zouzias, A., Freris, N.M.: Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 34, 773-793 (2013) |