Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5): 1769-1790.doi: 10.1007/s42967-024-00400-2
• ORIGINAL PAPERS • Previous Articles
Lu-Xin Wang1,2, Yang Cao1,3, Qin-Qin Shen3
Received:2023-11-30
Revised:2024-03-10
Accepted:2024-03-14
Online:2024-07-23
Published:2024-07-23
Contact:
Qin-Qin Shen,E-mail:shenqq@ntu.edu.cn
E-mail:shenqq@ntu.edu.cn
Supported by:Lu-Xin Wang, Yang Cao, Qin-Qin Shen. Two Variants of Robust Two-Step Modulus-Based Matrix Splitting Iteration Methods for Mixed-Cell-Height Circuit Legalization Problem[J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1769-1790.
| [1] Bai, Z.-Z.: The convergence of parallel iteration algorithms for linear complementarity problems. Comput. Math. Appl. 32(9), 1-17 (1996) [2] Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21(1), 67-78 (1999) [3] Bai, Z.-Z.: Optimal parameters in the HSS-like methods for saddle-point problems. Numer. Linear Algebra Appl. 16(6), 447-479 (2009) [4] Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17(6), 917-933 (2010) [5] Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27(1), 1-23 (2007) [6] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603-626 (2003) [7] Bai, Z.-Z., Guo, X.-P.: On Newton-HSS methods for systems of nonlinear equations with positive-definite Jacobian matrices. J. Comput. Appl. Math. 28(2), 235-260 (2010) [8] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [9] Bai, Z.-Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numer. Math. 102, 1-38 (2005) [10] Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428(11/12), 2900-2932 (2008) [11] Bai, Z.-Z., Yang, X.: On HSS-based iteration methods for weakly nonlinear systems. Appl. Numer. Math. 59, 2923-2936 (2009) [12] Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20(3), 425-439 (2013) [13] Bai, Z.-Z., Zhang, L.-L.: Modulus-based multigrid methods for linear complementarity problems. Numer. Linear Algebra Appl. 24(6), e2105 (2017) [14] Bustany, I.S., Chinnery, D., Shinnerl, J.R., Yutsis, V.: ISPD 2015 benchmarks with fence regions and routing blockages for detailed-routing-driven placement. In: Proceedings of the Symposium on International Symposium on Physical Design (2015) [15] Cao, Y., Shi, Q., Zhu, S.-L.: A relaxed generalized Newton iteration method for generalized absolute value equations. AIMS Math. 6(2), 1258-1275 (2021) [16] Cao, Y., Wang, A.: Two-step modulus-based matrix splitting iteration methods for implicit complementarity problems. Numer. Algorithms 82, 1377-1394 (2019) [17] Cao, Y., Yang, G.-C., Shen, Q.-Q.: Convergence analysis of projected SOR iteration method for a class of vertical linear complementarity problems. Comput. Appl. Math. 42(4), 191 (2023) [18] Chen, F., Zhu, Y.: A variant of two-step modulus-based matrix splitting iteration method for Retinex problem. Comput. Appl. Math. 41(6), 244 (2022) [19] Chen, F., Zhu, Y., Muratova, G.V.: Two-step modulus-based matrix splitting iteration methods for retinex problem. Numer. Algorithms 88, 1989-2005 (2021) [20] Chen, J.-L., Lin, Z.-F.: Mixed-cell-height placement with complex minimum-implant-area constraints. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 41(11), 4639-4652 (2021) [21] Chen, J.-L., Zhu, Z.-R., Zhu, W.-X., Chang, Y.W.: Toward optimal legalization for mixed-cell-height circuit designs. In: Proceedings of the Annual Design Automation Conference (2017) [22] Chen, J.-L., Zhu, Z.-R., Zhu, W.-X., Chang, Y.W.: A robust modulus-based matrix splitting iteration method for mixed-cell-height circuit legalization. ACM Trans. Des. Autom. Electron. Syst. 26(2), 1-28 (2020) [23] Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. SIAM, Philadelphia (2009) [24] Dong, J.-L.: Shifted skew-symmetric iteration methods for nonsymmetric linear complementarity problems. Numer. Algorithms 54(3), 343-357 (2010) [25] Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16(2), 129-143 (2009) [26] Hung, C.-Y., Chou, P.-Y., Mak, W.K.: Mixed-cell-height standard cell placement legalization. In: Proceedings of the on Great Lakes Symposium on VLSI (2017) [27] Liao, L.-Z., Wang, S.-L.: A self-adaptive projection and contraction method for linear complementarity problems. Appl. Math. Optim. 48(3), 169-180 (2003) [28] Lin, Y.-B., Jiang, Z.-X., Gu, J.-Q.: DREAMPlace: deep learning toolkit-enabled GPU acceleration for modern VLSI placement. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 40(4), 748-761 (2021) [29] Noor, M.A.: Fixed point approach for complementarity problems. J. Math. Anal. Appl. 133(2), 437-448 (1988) [30] Press, W.H. , Flannery ,B.P. , Teukolsky, S.A., Vetterling,W, T.: Numerical Recipes: the Art of Scientific Computing. Cambridge University Press, New York (2007) [31] Schfer, U.: On the modulus algorithm for the linear complementarity problem. Oper. Res. Lett. 32(4), 350-354 (2004) [32] Shi, Q., Shen, Q.-Q., Tang, T.-P.: A class of two-step modulus-based matrix splitting iteration methods for quasi-complementarity problems. Comput. Appl. Math. 39(1), 11 (2020) [33] Subramanian, P.K., Xiu, N.-H.: Convergence analysis of Gauss-Newton methods for the complementarity problem. J. Optim. Theory Appl. 94(3), 727-738 (1997) [34] Sun, L., Huang, Y.-M.: A modulus-based multigrid method for image retinex. Appl. Numer. Math. 164, 199-210 (2021) [35] Wang, A., Cao, Y., Chen, J.-X.: Modified Newton-type iteration methods for generalized absolute value equations. J. Optim. Theory. Appl. 181(1), 216-230 (2019) [36] Wang, L.-X., Shen, Q.-Q., Cao, Y.: Modulus-based matrix splitting iteration method for horizontal quasi-complementarity problem. Commun. Appl. Math. Comput. (2023). https://doi.org/10.1007/s42967-023-00311-8 [37] Zhang, L.-L.: Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algorithms 57(1), 83-99 (2011) [38] Zhang, L.-L., Ren, Z.-R.: A modified modulus-based multigrid method for linear complementarity problems arising from free boundary problems. Appl. Numer. Math. 164, 89-100 (2021) [39] Zhang, J.-J.: The relaxed nonlinear PHSS-like iteration method for absolute value equations. Appl. Math. Comput. 265, 266-274 (2015) [40] Zheng, H., Vong, S., Liu, L.: The relaxation modulus-based matrix splitting iteration method for solving a class of nonlinear complementarity problems. Int J. Comput. Math. 96, 1648-1667 (2019) [41] Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer. Algorithms 64(2), 245-262 (2013) [42] Zhou, C.-C., Cao, Y., Shi, Q., Qiu, J.: A robust two-step modulus-based matrix splitting iteration method for mixed-size cell circuit legalization problem. J. Circ. Syst. Comput. 32(8), 2350129 (2023) [43] Zhou, C.-C., Qiu, J., Cao, Y., Yang, G.-C., Shen, Q.-Q., Shi, Q.: An accelerated modulus-based matrix splitting iteration method for mixed-size cell circuits legalization. Integration VLSI J. 88, 20-31 (2023) [44] Zhou, C.-C., Shen, Q.-Q., Yang, G.-C., Shi, Q.: A general modulus-based matrix splitting method for quasi-complementarity problem. AIMS Math. 7(6), 10994-11014 (2022) |
| [1] | Qin-Qin Shen, Geng-Chen Yang, Chen-Can Zhou. Convergence Analysis of the Projected SOR Iteration Method for Horizontal Linear Complementarity Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1617-1638. |
| [2] | Xu Li, Jian-Sheng Feng. Parameterized QHSS Iteration Method and Its Variants for Non-Hermitian Positive Definite Linear Systems of Strong Skew-Hermitian Parts [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1665-1683. |
| [3] | Jin-Feng Mao, Fang Chen. On Multi-step Partially Randomized Extended Kaczmarz Method for Solving Large Sparse Inconsistent Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1724-1743. |
| [4] | Zhao-Zheng Liang, Jun-Lin Tian, Hong-Yi Wan. A Note on Chebyshev Accelerated PMHSS Iteration Method for Block Two-by-Two Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1242-1263. |
| [5] | Huaijun Yang. Unconditionally Superconvergence Error Analysis of an Energy-Stable and Linearized Galerkin Finite Element Method for Nonlinear Wave Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1264-1281. |
| [6] | Lu-Xin Wang, Qin-Qin Shen, Yang Cao. Modulus-Based Matrix Splitting Iteration Method for Horizontal Quasi-complementarity Problem [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1308-1332. |
| [7] | Xing Liu. An Accelerated Convergence Scheme for Solving Stochastic Fractional Diffusion Equation [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1444-1461. |
| [8] | Jing Chen, Qi Wang. Numerical Stability and Convergence for Delay Space-Fractional Fisher Equations with Mixed Boundary Conditions in Two Dimensions [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1462-1488. |
| [9] | Xuan Zhao, Zhongqin Xue. Efficient Variable Steps BDF2 Scheme for the Two-Dimensional Space Fractional Cahn-Hilliard Model [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1489-1515. |
| [10] | Long-Ze Tan, Ming-Yu Deng, Xue-Ping Guo. On Multi-step Greedy Kaczmarz Method for Solving Large Sparse Consistent Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1580-1597. |
| [11] | Yujian Cao, Jianguo Huang, Haoqin Wang. A Hybrid Iterative Method for Elliptic Variational Inequalities of the Second Kind [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 910-928. |
| [12] | Yun-Xia Tan, Zheng-Da Huang. On a Nonlinear Fast Deterministic Block Kaczmarz Method for Solving Nonlinear Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 954-969. |
| [13] | Gang Bao, Peijun Li, Xiaokai Yuan. Convergence of the PML Method for the Biharmonic Wave Scattering Problem in Periodic Structures [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 1122-1145. |
| [14] | Shipeng Mao, Jiaao Sun. Error Estimates of Finite Element Method for the Incompressible Ferrohydrodynamics Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 485-535. |
| [15] | Gui-Lin Yan, Yu-Jiang Wu, Bo Deng. Improvement of Convergence of One- and Two-Step MSM Iteration Methods for Nondifferentiable Nonlinear Complementarity Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 733-758. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||