1. Amara,M., Dabaghi, F.: An optimal c0 finite element algorithmfor the 2D biharmonic problem: theoretical analysis and numerical results. Numer. Math. 90, 19–46 (2001) 2. Antonietti, P., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Model. Methods Appl. Sci. 28(2), 387–407 (2018) 3. Bao, G., Li, P.: Convergence analysis in near-field imaging. Inverse Probl. 30, 085008 (2014) 4. Bao, G., Li, P.: Maxwell’s equations in periodic structures. In: Series on Applied Mathematical Sciences, vol. 208. Science Press, Beijing (2022) 5. Bao, G., Wu, H.: Convergence analysis of the PML problems for time-harmonic Maxwell’s equations. SIAM J. Numer. Anal. 43, 2121–2143 (2005) 6. Bérenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994) 7. Bourgeois, L., Chesnel, L., Fliss, S.: On well-posedness of time-harmonic problems in an unbounded strip for a thin plate model. Commun. Math. Sci. 17, 487–1529 (2019) 8. Bourgeois, L., Hazard, C.: On well-posedness of scattering problems in a Kirchhoff-love infinite plate. SIAM J. Appl. Math. 80, 1546–1566 (2020) 9. Bramble, J.H., Pasciak, J.E.: Analysis of a finite PML approximation for the three dimensional timeharmonic Maxwell and acoustic scattering problems. Math. Comput. 76, 597–614 (2007) 10. Bramble, J.H., Pasciak, J.E., Trenev, D.: Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem. Math. Comput. 79, 2079–2101 (2010) 11. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008) 12. Chen, Z., Liu, X.: An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43, 645–671 (2005) 13. Chen, Z., Xiang, X., Zhang, X.: Convergence of the PML method for elastic wave scattering problems. Math. Comput. 85, 2687–2714 (2016) 14. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978) 15. Ciarlet, P.G., Glowinski, R.: Dual iterative techniques for solving a finite element approximation of the biharmonic equation. Comput. Methods Appl. Mech. Eng. 5, 277–295 (1975) 16. Ciarlet, P.G., Raviart, P.: A mixed finite element method for the biharmonic equation. In: Boor, C.D. (ed.) Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–143. Academic Press, New York (1974) 17. Darabi, A., Zareei, A., Alam, M., Leamy, M.: Experimental demonstration of an ultrabroadband nonlinear cloak for flexural waves. Phys. Rev. Lett. 121, 174301 (2018) 18. Dong, H., Li, P.: A novel boundary integral formulation for the biharmonic wave scattering problem. arXiv:2301.10142 (2023) 19. Farhat, M., Guenneau, S., Enoch, S.: Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009) 20. Farhat, M., Guenneau, S., Enoch, S.: Finite elements modelling of scattering problems for flexural waves in thin plates: application to elliptic invisibility cloaks, rotators and the mirage effect. J. Comput. Phys. 230, 2237–2245 (2011) 21. Haslinger, S.: Mathematical Modelling of Flexural Waves in Structured Elastic Plates. Ph.D. Thesis. University of Liverpool, Liverpool ( 2014) 22. Haslinger, S., Craster, R., Movchan, A., Movchan, N., Jones, I.: Dynamic interfacial trapping of flexural waves in structured plates. Proc. R. Soc. A. 472, 20150658 (2016) 23. Hsiao, G.C., Wendland, W.L.: Boundary integral equations. In: Applied Mathematical Sciences, 2nd edition, vol. 164. Springer, Switzerland (2021) 24. Li, P., Wu, H., Zheng, W.: Electromagnetic scattering by unbounded rough surfaces. SIAM J. Math. Anal. 43, 1205–1231 (2011) 25. Morvaridi, M., Brun, M.: Perfectly matched layers for flexural waves: an exact analytical model. Int. J. Solids Struct. 102, 1–9 (2016) 26. Morvaridi, M., Brun, M.: Perfectly matched layers for flexural waves in Kirchhoff-love plates. Int. J. Solids Struct. 134, 293–303 (2018) 27. Mu, L., Wang, J., Ye, X., Zhang, S.: A C0 weak Galerkin finite element methods for the biharmonic equation. J. Sci. Comput. 59, 437–495 (2014) 28. Pelat, A., Gautier, F., Conlon, S.C., Semperlotti, F.: The acoustic black hole: a review of theory and applications. J. Sound Vib. 476, 115316 (2020) 29. Smith, M.J.A.: Wave Propagation Through Periodic Structures in Thin Plates. Ph.D. Thesis. The University of Auckland, Auckland (2013) 30. Smith, M.J.A., Meylan, M.H., Mcphedran, R.C.: Scattering by cavities of arbitrary shape in an infinite plate and associated vibration problems. J. Sound Vib. 330, 4029–4046 (2011) 31. Teixeira, F., Chew, W.: Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates. IEEE Microw. Guided Wave Lett. 7, 371–373 (1997) 32. Ye, X., Zhang, S.: A stabilizer free weak Galerkin method for the biharmonic equation on polytopal meshes. SIAM J. Numer. Anal. 58, 2572–2588 (2020) 33. Yue, J., Li, P.: Numerical solution of the cavity scattering problem for flexural waves on thin plates: linear finite element methods. J. Comput. Phys. 497, 112606 (2024) 34. Yue, J., Li, P., Yuan, X., Zhu, X.: A diffraction problem for the biharmonic wave equation in onedimensional periodic structures. Results Appl. Math. 17, 100350 (2023) 35. Zhang, R., Zhai, Q.: A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order. J. Sci. Comput. 64, 559–585 (2015) 36. Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems. Math. Model. Methods Appl. Sci. 26, 1671–1687 (2016) |