1. Ainsworth, M., Mao, Z.:Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55, 1689-1718(2017) 2. Ainsworth, M., Mao, Z.:Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos Solitons Fractals. 102, 264-273(2017) 3. Allen, S.M., Cahn, J.W.:A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085-1095(1979) 4. Ambrosio, V.:On the existence of periodic solutions for a fractional Schrödinger equation. In:Proceedings of the American Mathematical Society (2018) 5. Antoine, X., Tang, Q., Zhang, Y.:On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions. J. Comput. Phys. 325, 74-97(2016) 6. Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondracek, Z.:Potential analysis of stable processes and its extensions. In:Graczyk, P., Stos, A. (eds.) Lecture Notes in Mathematics, vol. 1980. Springer, Berlin (2009) 7. Cahn, J.W.:Free energy of a nonuniform system. Ⅱ. Thermodynamic basis. J. Chem. Phys. 30, 1121-1124(1959) 8. Cahn, J.W., Hilliard, J.E.:Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258-267(1958) 9. Kopriva, D.A.:Implementing spectral methods for partial differential equations:algorithms for scientists and engineers. Springer, Berlin (2009) 10. Lieb, E.H., Yau, H.-T.:The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phys. 112, 147-174(1987) 11. Lieb, E.H., Yau, H.-T.:The stability and instability of relativistic matter. Comm. Math. Phys. 118, 177-213(1988) 12. Shen, J., Yang, X.:Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Cont. Dyn. Syst. 28, 1669-1691(2010) 13. Yue, P., Feng, J.J., Liu, C., Shen, J.:A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293-317(2004) |