1. Appelö, D., Chen, R., Hagstrom, T.: A hybrid Hermite-discontinuous Galerkin method for hyperbolic systems with applications to Maxwell’s equations. J. Comput. Phys. 257, 501–520 (2013) 2. Appelö, D., Hagstrom, T.: Solving PDEs with Hermite interpolation. In: Lecture Notes in Computational Science, pp. 31–49. Springer, Berlin (2015) 3. Appelö, D., Hagstrom, T., Vargas, A.: Hermite methods for the scalar wave equation. SIAM J. Sci. Comput. 40, 3902–3927 (2018) 4. Banks, J.W., Buckner, B., Henshaw, W., Jenkinson, M., Kildeshev, A., Kovacic, G., Prokopeva, L., Schwendeman, D.: A high-order accurate scheme for Maxwell’s equations with a Generalized Dispersive Material (GDM) model and material interfaces. J. Comput. Phys. 412, 109424 (2020) 5. Bokil, V., Gibson, N.: Convergence analysis of Yee schemes for Maxwell’s equations in Debye and Lorentz dispersive media. Int. J. Numer. Anal. Mod. 11, 657–687 (2014) 6. Byrne, G.D., Hindmarsh, A.C.: A polyalgorithm for the numerical solution of ordinary differential equations. ACM Trans. Math. Softw. 1, 71–96 (1975) 7. Goodrich, J., Hagstrom, T., Lorenz, J.: Hermite methods for hyperbolic initial-boundary value problems. Math. Comput. 75, 595–630 (2006) 8. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, New York (1992) 9. Holland, R.: Finite-difference solution of Maxwell’s equations in generalized nonorthogonal coordinates. IEEE Trans. Nucl. Sci. 30, 4589–4591 (1983) 10. Jiang, Y., Sakkaplangkul, P., Bokil, V., Cheng, Y., Li, F.: Dispersion analysis of finite difference and discontinuous Galerkin schemes for Maxwell’s equations in linear Lorentz media. J. Comput. Phys. 394, 100–135 (2019) 11. Joly, P.: Variational methods for time-dependent wave propagation problems. In: Ainsworth, M., Davies, P., Duncan, D., Martin, P., Rynne, B. (eds.) Topics in Computational Wave Propagation, pp. 201–264. Springer, Berlin (2003) 12. Law, Y.-M., Appelö, D.: The Hermite-Taylor correction function method for Maxwell’s equations. Commun. Appl. Math. Comput. 7, 347–371 (2023). https://doi.org/10.1007/s42967-023-00287-5 13. Loya, A.A., Appelö, D., Henshaw, W.D.: High order accurate Hermite schemes on curvilinear grids with compatibility boundary conditions. J. Comput. Phys. 522, 113597 (2025) 14. Mai, W., Campbell, S.D., Whiting, E.B., Kang, L., Werner, P.L., Chen, Y., Werner, D.H.: Prismatic discontinuous Galerkin time domain method with an integrated generalized dispersion model for efficient optical metasurface analysis. Opt. Mater. Express 10, 2542–2559 (2020) 15. Palik, E.D.: Handbook of Optical Constants of Solids II. Academic Press, San Diego (1998) 16. Prokopeva, L., Borneman, J., Kildishev, A.: Optical dispersion models for time-domain modeling of metal-dielectric nanostructures. IEEE Trans. Magn. 47, 1150–1153 (2011) 17. Qiang, R., Bao, H., Campbell, S.D., Prokopeva, L.J., Kildishev, A.V., Werner, D.H.: Continuousdiscontinuous Galerkin time domain (CDGTD) method with generalized dispersive material (GDM) model for computational photonics. Opt. Express 26, 29005–29016 (2018) 18. Shi, C., Li, J., Shu, C-W.: Discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials on unstructured meshes. J. Comput. Appl. Math. 342, 147–163 (2018) 19. Vargas, A., Chan, J., Hagstrom, T., Warburton, T.: GPU acceleration of Hermite methods for simulation of wave propagation. In: Lecture Notes in Computational Science, pp. 357–368. Springer, Berlin (2017) 20. Vargas, A., Hagstrom, T., Chan, J., Warburton, T.: Leapfrog time-stepping for Hermite methods. J. Sci. Comput. 30, 289–314 (2019) 21. Yang, W., Huang, Y., Li, J.: Developing a time-domain finite element method for the Lorentz metamaterial model and applications. J. Sci. Comput. 68, 438–463 (2016) |