Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (3): 954-969.doi: 10.1007/s42967-024-00427-5
Previous Articles Next Articles
Yun-Xia Tan, Zheng-Da Huang
Received:
2023-11-28
Revised:
2024-05-01
Accepted:
2024-05-03
Online:
2025-09-20
Published:
2025-05-23
CLC Number:
Yun-Xia Tan, Zheng-Da Huang. On a Nonlinear Fast Deterministic Block Kaczmarz Method for Solving Nonlinear Equations[J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 954-969.
1. Alam, S.M.S., Natarajan, B., Pahwa, A.: Distribution grid state estimation from compressed measurements. IEEE Trans. Smart Grid 5, 1631–1642 (2014) 2. An, H.-B., Bai, Z.-Z.: NGLM: a globally convergent Newton-GMRES method (in Chinese). Math. Numer. Sin. 27, 151–174 (2005) 3. An, H.-B., Bai, Z.-Z.: A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations. Appl. Numer. Math. 57, 235–252 (2007) 4. Bai, Z.-Z., An, H.-B.: On efficient variants and global convergence of the Newton-GMRES method (in Chinese). J. Numer. Methods Comput. Appl. 26, 291–300 (2005) 5. Bai, Z.-Z., Guo, X.-P.: On Newton-HSS methods for systems of nonlinear equations with positive-definite Jacobian matrices. J. Comput. Math. 28, 235–260 (2010) 6. Bai, Z.-Z., Wang, L.: On convergence rates of Kaczmarz-type methods with different selection rules of working rows. Appl. Numer. Math. 186, 289–319 (2023) 7. Bai, Z.-Z., Wu, W.-T.: On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 40, A592–A606 (2018) 8. Bai, Z.-Z., Wu, W.-T.: On convergence rate of the randomized Kaczmarz method. Linear Algebra Appl. 553, 252–269 (2018) 9. Bao, J.-F., Yu, C.K.W., Wang, J.-H., Hu, Y.-H., Yao, J.-C.: Modified inexact Levenberg-Marquardt methods for solving nonlinear least squares problems. Comput. Optim. Appl. 74, 547–582 (2019) 10. Bellavia, S., Morini, B.: A globally convergent Newton-GMRES subspace method for systems of nonlinear equations. SIAM J. Sci. Comput. 23, 940–960 (2001) 11. Ben-Israel, A.: A Newton-Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15, 243–252 (1966) 12. Brown, K.M.: A quadratically convergent Newton-like method based upon Gaussian elimination. SIAM J. Numer. Anal. 6, 560–569 (1969) 13. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004) 14. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23, 444–466 (1981) 15. Censor, Y.: Parallel application of block-iterative methods in medical imaging and radiation therapy. Math. Progr. 42, 307–325 (1988) 16. Chen, J.-Q., Huang, Z.-D.: On a fast deterministic block Kaczmarz method for solving large-scale linear systems. Numer. Algorithms 89, 1007–1029 (2022) 17. Chen, Q.-P., Hao, W.-R.: Randomized Newton’s method for solving differential equations based on the neural network discretization. J. Sci. Comput. 92, 49 (2022) 18. Chen, X.-J., Womersley, R.S.: Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J. Numer. Anal. 44, 2326–2341 (2006) 19. Du, K., Gao, H.: A new theoretical estimate for the convergence rate of the maximal weighted residual Kaczmarz algorithm. Numer. Math. Theory Methods Appl. 12, 627–639 (2019) 20. Eggermont, P.P.B., Herman, G.T., Lent, A.: Iterative algorithms for large partitioned linear systems, with applications to image reconstruction. Linear Algebra Appl. 40, 37–67 (1981) 21. Elble, J.M., Sahinidis, N.V., Vouzis, P.: GPU computing with Kaczmarz’s and other iterative algorithms for linear systems. Parall. Comput. 36, 215–231 (2010) 22. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471–481 (1970) 23. Gower, R.M., Richtárik, P.: Randomized iterative methods for linear systems. SIAM J. Matrix Anal. Appl. 36, 1660–1690 (2015) 24. Haltmeier, M., Leitao, A., Scherzer, O.: Kaczmarz methods for regularizing nonlinear ill-posed equations I: convergence analysis. Inverse Probl. Imaging 1, 289–298 (2007) 25. Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995) 26. Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imaging 12, 600–609 (1993) 27. Hounsfield, G.N.: Computerized transverse axial scanning (tomography). Part I. Description of system (Reprinted from British-Journal-of-Radiology. 46, 1016–1022, 1973). Br. J. Radiol. 68, 166–172 (1995) 28. Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bull. Int. Acad. Polon. Sci. Lett. A 35, 355–357 (1937) 29. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988) 30. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Walter de Gruyter, Berlin (2008) 31. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003) 32. Kuegler, P.: A sparse update method for solving underdetermined systems of nonlinear equations applied to the manipulation of biological signaling pathways. SIAM J. Appl. Math. 72, 982–1001 (2012) 33. Li, L., Li, W.-G., Xing, L.-L., Bao, W.-D.: Nonlinear greedy relaxed randomized Kaczmarz method. Results Appl. Math. 16, 100340 (2022) 34. Liu, C.-W.: An acceleration scheme for row projection methods. J. Comput. Appl. Math. 57, 363–391 (1995) 35. Martínez, J.M.: The projection method for solving nonlinear systems of equations under the “most violated constraint” control. Comput. Math. Appl. 11, 987–993 (1985) 36. McCormick, S.F.: The methods of Kaczmarz and row orthogonalization for solving linear equations and least squares problems in Hilbert space. Indiana Univ. Math. J. 26, 1137–1150 (1977) 37. Meyn, K.H.: Solution of underdetermined nonlinear equations by stationary iteration methods. Numer. Math. 42, 161–172 (1983) 38. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981) 39. Needell, D., Srebro, N., Ward, R.: Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm. Math. Program. 155, 549–573 (2016) 40. Needell, D., Tropp, J.A.: Paved with good intentions: analysis of a randomized block Kaczmarz method. Linear Algebra Appl. 441, 199–221 (2014) 41. Niu, Y.-Q., Zheng, B.: A greedy block Kaczmarz algorithm for solving large-scale linear systems. Appl. Math. Lett. 104, 106294 (2020) 42. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) 43. Pasqualetti, F., Carli, R., Bullo, F.: Distributed estimation via iterative projections with application to power network monitoring. Autom. J. IFAC 48, 747–758 (2012) 44. Romero, L.A., Mason, J.: Geolocation using TOA, FOA, and altitude information at singular geometries. IEEE Trans. Aerosp. Electron. Syst. 51, 1069–1078 (2015) 45. Shao, C.-P.: A deterministic Kaczmarz algorithm for solving linear systems. SIAM J. Matrix Anal. Appl. 44, 212–239 (2023) 46. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15, 262–278 (2009) 47. Tompkins, C.: Projection methods in calculation. In: Proceedings of the Second Symposium in Linear Programming, Washington, D.C., 1955, pp. 425–448. National Bureau of Standards, Washington, DC (1955) 48. Wang, Q.-F., Li, W.-G., Bao, W.-D., Gao, X.-Q.: Nonlinear Kaczmarz algorithms and their convergence. J. Comput. Appl. Math. 399, 113720 (2022) 49. Ye, W.-N., Zhang, M., Zhu, Y., Wang, L.-J., Hu, J.-C., Li, X., Hu, C.-X.: Real-time displacement calculation and offline geometric calibration of the grating interferometer system for ultra-precision wafer stage measurement. Precis. Eng. 60, 413–420 (2019) 50. Yuan, R., Lazaric, A., Gower, R.M.: Sketched Newton-Raphson. SIAM J. Optim. 32, 1555–1583 (2022) 51. Zhang, F.-Y., Bao, W.-D., Li, W.-G., Wang, Q.: On sampling Kaczmarz-Motzkin methods for solving large-scale nonlinear systems. Comput. Appl. Math. 42, 126 (2023) 52. Zhang, J.-H., Wang, Y.-Q., Zhao, J.: On maximum residual nonlinear Kaczmarz-type algorithms for large nonlinear systems of equations. J. Comput. Appl. Math. 425, 115065 (2023) |
[1] | Yujian Cao, Jianguo Huang, Haoqin Wang. A Hybrid Iterative Method for Elliptic Variational Inequalities of the Second Kind [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 910-928. |
[2] | Gang Bao, Peijun Li, Xiaokai Yuan. Convergence of the PML Method for the Biharmonic Wave Scattering Problem in Periodic Structures [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 1122-1145. |
[3] | Shipeng Mao, Jiaao Sun. Error Estimates of Finite Element Method for the Incompressible Ferrohydrodynamics Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 485-535. |
[4] | Gui-Lin Yan, Yu-Jiang Wu, Bo Deng. Improvement of Convergence of One- and Two-Step MSM Iteration Methods for Nondifferentiable Nonlinear Complementarity Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 733-758. |
[5] | Mengfei Wang, Yan Xu. Superconvergence of UWLDG Method for One-Dimensional Linear Sixth-Order Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 771-795. |
[6] | Ren Liu, Lifei Wu. Numerical Approach for Solving Two-Dimensional Time-Fractional Fisher Equation via HABC-N Method [J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 315-346. |
[7] | Pavel Bakhvalov, Mikhail Surnachev. On the Order of Accuracy of Edge-Based Schemes: a Peterson-Type Counter-Example [J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 372-391. |
[8] | Jieying Zhang, Caixia Ou, Zhibo Wang, Seakweng Vong. An Order Reduction Method for the Nonlinear Caputo-Hadamard Fractional Diffusion-Wave Model [J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 392-408. |
[9] | Mária Lukáčová-Medvid'ová, Yuhuan Yuan. Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2215-2238. |
[10] | Michel Bergmann, Afaf Bouharguane, Angelo Iollo, Alexis Tardieu. High Order ADER-IPDG Methods for the Unsteady Advection-Diffusion Equation [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1954-1977. |
[11] | Yifan Chen, Thomas Y. Hou, Yixuan Wang. Exponentially Convergent Multiscale Finite Element Method [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 862-878. |
[12] | Wes Whiting, Bao Wang, Jack Xin. Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 1175-1188. |
[13] | Daniil Bochkov, Frederic Gibou. A Non-parametric Gradient-Based Shape Optimization Approach for Solving Inverse Problems in Directed Self-Assembly of Block Copolymers [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 1472-1489. |
[14] | Xuechun Liu, Haijin Wang, Jue Yan, Xinghui Zhong. Superconvergence of Direct Discontinuous Galerkin Methods: Eigen-structure Analysis Based on Fourier Approach [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 257-278. |
[15] | Changpin Li, Dongxia Li, Zhen Wang. L1/LDG Method for the Generalized Time-Fractional Burgers Equation in Two Spatial Dimensions [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1299-1322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||