1. Ahmed, H.F.: Analytic approximate solutions for the 1D and 2D nonlinear fractional diffusion equations of Fisher type. Comptes rendus de l’Académie bulgare des Sciences 73, 320–330 (2020). https:// doi. org/ 10. 7546/ CRABS. 2020. 03. 04 2. Alquran, M., Al-Khaled, K., Sardar, T., Chattopadhyay, J.: Revisited Fisher’s equation in a new outlook: a fractional derivative approach. Phys. A 438, 81–93 (2015). https:// doi. org/ 10. 1016/j. physa.2015. 06. 036 3. Angstmann, C.N., Henry, B.I.: Time fractional Fisher-KPP and Fitzhugh-Nagumo equations. Entropy 22, 1035 (2020). https:// doi. org/ 10. 3390/ e2209 1035 4. Biala, T.A., Khaliq, A.Q.M.: Parallel algorithms for nonlinear time-space fractional parabolic PDEs. J. Comput. Phys. 375, 135–154 (2018). https:// doi. org/ 10. 1016/j. jcp. 2018. 08. 034 5. Chen, W., Sun, H., Li, X.: Fractional Derivative Modeling in Mechanics and Engineering. Springer, Singapore (2022) 6. Dang, D.T., Nane, E., Nguyen, D.M., Tuan, N.H.: Continuity of solutions of a class of fractional equations. Potential Anal. 49, 423–478 (2018). https:// doi. org/ 10. 1007/ s11118- 017- 9663-5 7. Diethelm, K.: The Analysis of Fraction Differential Equations. Springer, Berlin (2010) 8. Ding, P., Yan, Y., Liang, Z., Yan, Y.: Finite difference method for time-fractional Klein-Gordon equation on an unbounded domain using artificial boundary conditions. Math. Comput. Simulation 205, 902–925 (2023). https:// doi. org/ 10. 1016/j. matcom. 2022. 10. 030 9. Foroozani, A., Ebrahimi, M.: Nonlinear anomalous information diffusion model in social networks. Commun. Nonlinear Sci. Numer. Simul. 103, 106019 (2021). https:// doi. org/ 10. 1016/j. cnsns. 2021. 106019 10. Fu, H., Wang, H.: A preconditioned fast parareal finite difference method for space-time fractional partial differential equation. J. Sci. Comput. 78, 1724–1743 (2019). https:// doi. org/ 10. 1007/ s10915- 018- 0835-2 11. Gong, C., Bao, W., Tang, G.: A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method. Fract. Calc. Appl. Anal. 16, 654–669 (2013). https:// doi. org/ 10. 2478/ s13540- 013- 0041-8 12. Guo, B., Pu, X., Huang, F.: Fractional Partial Differential Equations and Their Numerical Solutions. Science Press, Beijing (2015) 13. Ji, C., Sun, Z.: The high-order compact numerical algorithms for the two-dimensional fractional subdiffusion equation. Appl. Math. Comput. 269, 775–791 (2015). https:// doi. org/ 10. 1016/j. amc. 2015. 07. 088 14. Khader, M.M., Saad, K.M.: A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method. Chaos, Solitons and Fractals 110, 169–177 (2018). https:// doi. org/ 10. 1016/j. chaos. 2018. 03. 018 15. Kumar, D., Chaudhary, S., Srinivas Kumar, V.V.K.: Fractional Crank-Nicolson-Galerkin finite element scheme for the time-fractional nonlinear diffusion equation. Numer. Methods Partial Differential Equations 35, 2056–2075 (2019). https:// doi. org/ 10. 1002/ num. 22399 16. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. CRC Press, New York (2015) 17. Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018). https:// doi. org/ 10. 4208/ cicp. OA- 2017- 0080 18. Liu, F., Zhuang, P., Liu, Q.: Numerical Methods and Its Application of Fractional Partial Differential Equation. Science Press, Beijing (2015). (In Chinese) 19. Liu, H., Cheng, A., Wang, H.: A parareal finite volume method for variable-order time-fractional diffusion equations. J. Sci. Comput. 85, 19 (2020). https:// doi. org/ 10. 1007/ s10915- 020- 01321-x 20. Liu, N., Liu, Y., Li, H., Wang, J.: Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term. Comput. Math. Appl. 75, 3521–3536 (2018). https:// doi. org/ 10. 1016/j. camwa. 2018. 02. 014 21. Liu, R., Yang, X., Lyu, P.: A new parallelized computation method of HASC-N difference method for inhomogeneous time fractional Fisher equation. Fractal Fract. 6, 259 (2022). https:// doi. org/ 10. 3390/ fract alfra ct605 0259 22. Liu, X., Wang, T., Jin, S., Xu, Q.: Two energy-preserving compact finite difference schemes for the nonlinear fourth-order wave equation. Commun. Appl. Math. Comput. 4, 1509–1530 (2022). https:// doi. org/ 10. 1007/ s42967- 022- 00193-2 23. Macías-Díaz, J.E., Gallegos, A.: Design and numerical analysis of a logarithmic scheme for nonlinear fractional diffusion-reaction equations. J. Comput. Appl. Math. 404, 113118 (2022). https:// doi. org/ 10. 1016/j. cam. 2020. 113118 24. Mejía, C.E., Piedrahita, A.: A numerical method for a time-fractional advection-dispersion equation with a nonlinear source term. J. Appl. Math. Comput. 61, 593–609 (2019). https:// doi. org/ 10. 1007/ s12190- 019- 01266-x 25. Morton, K., Mayers, D.: Numerical Solutions of Partial Differential Equations. Cambridge University Press, London (2005) 26. Ngoc, T.B., Tri, V.V., Hammouch, Z., Can, N.H.: Stability of a class of problems for time-space fractional pseudo-parabolic equation with datum measured at terminal time. Appl. Numer. Math. 167, 308–329 (2021). https:// doi. org/ 10. 1016/j. apnum. 2021. 05. 009 27. Pacheco, P.: An Introduction to Parallel Programming. Morgan Kaufmann, Burlington (2011) 28. Petter, B., Mitchell, L.: Parallel Solution of Partial Differential Equations. Springer, New York (2000) 29. Roul, P., Rohil, V.: A high order numerical technique and its analysis for nonlinear generalized Fisher’s equation. J. Comput. Appl. Math. 406, 114047 (2022). https:// doi. org/ 10. 1016/j. cam. 2021. 114047 30. Sabatier, J., Agrawal, O.P., Machado, J.A.T.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Beijing World Publishing Corporation, Beijing (2014) 31. Sandev, T., Tomovski, Z.: Fractional Equations and Models: Theory and Applications. Springer, Berlin (2019) 32. Sun, Z., Gao, G.: Finite Difference Methods for Fractional Differential Equations, 2nd edn. Science Press, Beijing (2021). (In Chinese) 33. Sweilam, N.H., Moharram, H., Moniem, N.K.A., Ahmed, S.: A parallel Crank-Nicolson finite difference method for time-fractional parabolic equation. J. Numer. Math. 22, 363–382 (2014). https:// doi. org/ 10. 1515/ jnma- 2014- 0016 34. Tyson, J.J., Brazhnik, P.K.: On traveling wave solutions of Fisher’s equation in two spatial dimensions. SIAM J. Appl. Math. 60, 371–391 (2000). https:// doi. org/ 10. 1137/ s0036 13999 73254 97 35. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Volume I Background and Theory Volume II Applications. Springer, Berlin (2013) 36. Wang, Q., Liu, J., Gong, C., Tang, X., Fu, G., Xing, Z.: An efficient parallel algorithm for Caputo fractional reaction-diffusion equation with implicit finite-difference method. Adv. Difference Equ. 2016, 207 (2016). https:// doi. org/ 10. 1186/ s13662- 016- 0929-9 37. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference scheme for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013). https:// doi. org/ 10. 1016/j. jcp. 2013. 03. 007 38. Wang, Y., Liu, Y., Li, H., Wang, J.: Finite element method combined with second-order time discrete scheme for nonlinear fractional cable equation. Eur. Phys. J. Plus 131, 61 (2016). https:// doi. org/ 10. 1140/ epjp/ i2016- 16061-3 39. Yan, R., He, Y., Zuo, Q.: A difference method with parallel nature for solving time-space fractional Black-Schole model. Chaos, Solitons and Fractals 151, 111280 (2021). https:// doi. org/ 10. 1016/j. chaos.2021. 111280 40. Yang, Y., Zeng, F.: Numerical analysis of linear and nonlinear time-fractional subdiffusion equations. Commun. Appl. Math. Comput. 1, 621–637 (2019). https:// doi. org/ 10. 1007/ s42967- 019- 00033-w 41. Youssef, M.Z., Khader, M.M., Al-Dayel, I., Ahmed, W.E.: Solving fractional generalized Fisher-Kolmogorov-Petrovsky-Piskunov’s equation using compact-finite different methods together with spectral collocation algorithms. J. Math. 2022, 1901131 (2022). https:// doi. org/ 10. 1155/ 2022/ 19011 31 42. Yu, Y., Deng, W., Wu, Y.: Positivity and boundedness preserving schemes for space-time fractional predator-Prey reaction-diffusion model. Comput. Math. Appl. 69, 743–759 (2015). https:// doi. org/ 10. 1016/j. camwa. 2015. 02. 024 43. Yuan, G., Sheng, Z., Hang, X.: The unconditional stability of parallel difference schemes with second order convergence for nonlinear parabolic system. J. Partial Differential Equations 20, 45–64 (2007) 44. Yue, X., Shu, S., Xu, X., Bu, W., Pan, K.: Parallel-in-time multigrid for space-time finite element approximations of two-dimensional space-fractional diffusion equations. Comput. Math. Appl. 78, 3471–3484 (2019). https:// doi. org/ 10. 1016/j. camwa. 2019. 05. 017 45. Zhang, B., Su, X.: Alternating block explicit-implicit method for the two-dimensional diffusion equation. Int. J. Comput. Math. 38, 241–255 (1991). https:// doi. org/ 10. 1080/ 00207 16910 88039 72 46. Zhang, X., He, Y., Wei, L., Tang, B., Wang, S.: A fully discrete local discontinuous Galerkin method for one-dimensional time-fractional Fisher’s equation. Int. J. Comput. Math. 91, 2021–2038 (2014). https:// doi. org/ 10. 1080/ 00207 160. 2013. 866233 47. Zhou, Y.: Difference schemes with intrinsic parallelism for quasi-linear parabolic systems. Sci. China Math. 40, 270–278 (1997). https:// doi. org/ 10. 1007/ BF028 74519 |