Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (1): 347-371.doi: 10.1007/s42967-023-00287-5
Previous Articles Next Articles
Yann-Meing Law, Daniel Appel?
Received:
2022-10-13
Revised:
2023-03-18
Accepted:
2023-05-15
Online:
2025-04-21
Published:
2025-04-21
Supported by:
CLC Number:
Yann-Meing Law, Daniel Appel?. The Hermite-Taylor Correction Function Method for Maxwell’s Equations[J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 347-371.
1. Abraham, D.S., Marques, A.N., Nave, J.C.: A correction function method for the wave equation with interface jump conditions. J. Comput. Phys. 353, 281–299 (2018) 2. Assous, F., Ciarlet, P., Labrunie, S.: Mathematical Foundations of Computational Electromagnetism. Springer International Publishing, New York (2018) 3. Assous, F., Ciarlet, P., Segré, J.: Numerical solution to time-dependent Maxwell equations in twodimensional singular domains: the singular complement method. J. Comput. Phys. 161, 218–249 (2000) 4. Balsara, D.S., Käppeli, R.: von Neumann stability analysis of globally constraint-preserving DGTD and PNPM schemes for the Maxwell equations using multidimensional Riemann solvers. J. Comput. Phys. 376, 1108–1137 (2019) 5. Beznosov, O., Appelö, D.: Hermite-discontinuous Galerkin overset grid methods for the scalar wave equation. Commun. Appl. Math. Comput. 3, 391–418 (2021) 6. Chen, W., Li, X., Liang, D.: Energey-conserved splitting finite-difference time-domain methods for Maxwell’s equations in three dimensions. SIAM J. Numer. Anal. 48, 1530–1554 (2010) 7. Chen, X., Appelö, D., Hagstrom, T.: A hybrid Hermite-discontinuous Galerkin method for hyperbolic systems with application to Maxwell’s equations. J. Comput. Phys. 257, 501–520 (2014) 8. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001) 9. Fan, G.X., Liu, Q.H., Hesthaven, J.S.: Multidomain pseudospectral time-domain simulations of scattering by objects buried in lossy media. IEEE Trans. Geosci. Remote Sens. 40, 1366–1373 (2002) 10. Galagusz, R., Shirokoff, D., Nave, J.C.: A Fourier penalty method for solving the time-dependent Maxwell’s equations in domains with curved boundaries. J. Comput. Phys. 306, 167–198 (2016) 11. Goodrich, J., Hagstrom, T., Lorenz, J.: Hermite methods for hyperbolic initial-boundary value problems. Math. Comp. 75, 595–630 (2005) 12. Hagstrom, T., Appelö, D.: Solving PDEs with Hermite interpolation. In: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014: Selected papers from the ICOSAHOM Conference, June 23–27, 2014, Salt Lake City, Utah, USA, pp. 31–49. Springer (2015) 13. Hazra, A., Chandrashekar, P., Balsara, D.S.: Globally constraint-preserving FR/DG scheme for Maxwell’s equations at all orders. J. Comput. Phys. 394, 298–328 (2019) 14. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002) 15. Law, Y.M., Marques, A.N., Nave, J.C.: Treatment of complex interfaces for Maxwell’s equations with continuous coefficients using the correction function method. J. Sci. Comput. 82(3), 56 (2020) 16. Law, Y.M., Nave, J.C.: FDTD schemes for Maxwell’s equations with embedded perfect electric conductors based on the correction function method. J. Sci. Comput. 88(3), 72 (2021) 17. Law, Y.M., Nave, J.C.: High-order FDTD schemes for Maxwell’s interface problems with discontinuous coefficients and complex interfaces based on the correction function method. J. Sci. Comput. 91(1), 26 (2022) 18. Liang, D., Yuan, Q.: The spatial fourth-order energy-conserved S-FDTD scheme for Maxwell’s equations. J. Comput. Phys. 243, 344–364 (2013) 19. Lindell, I., Sihvola, A.: Boundary Conditions in Electromagnetics. John Wiley & Sons, New Jersey (2019) 20. Loya, A.A., Appelö, D., Henshaw, W.D.: Hermite methods for the wave equation: compatibility and interface conditions (2022) (in preparation) 21. Marques, A.N., Nave, J.C., Rosales, R.R.: A correction function method for Poisson problems with interface jump conditions. J. Comput. Phys. 230, 7567–7597 (2011) 22. Marques, A.N., Nave, J.C., Rosales, R.R.: High order solution of Poisson problems with piecewise constant coefficients and interface jumps. J. Comput. Phys. 335, 497–515 (2017) 23. Marques, A.N., Nave, J.C., Rosales, R.R.: Imposing jump conditions on nonconforming interfaces for the correction function method: a least squares approach. J. Comput. Phys. 397, 108869 (2019) 24. Namiki, T.: A new FDTD algorithm based on alternating-direction implicit method. IEEE Trans. Microw. Theory Technol. 47, 2003–2007 (1999) 25. Tan, E.L., Heh, D.Y.: ADI-FDTD method with fourth order accuracy in time. IEEE Microw. Wirel. Compon. Lett. 18, 296–298 (1999) 26. Xie, Z., Chan, C.H., Zhang, B.: An explicit fourth-order staggered finite-difference time-domain method for Maxwell’s equations. J. Comput. Appl. Math. 147, 75–98 (2002) 27. Yang, B., Gottlieb, D., Hesthaven, J.S.: Spectral simulations of electromagnetic wave scattering. J. Comput. Phys. 134, 216–230 (1997) 28. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966) 29. Zheng, F., Chen, Z., Zhang, J.: A finite-difference time-domain method without the Courant stability conditions. IEEE Microw. Wirel. Compon. Lett. 9, 441–443 (1999) |
[1] | Lorenzo Micalizzi, Davide Torlo, Walter Boscheri. Efficient Iterative Arbitrary High-Order Methods: an Adaptive Bridge Between Low and High Order [J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 40-77. |
[2] | Siegfried Müller, Michael Rom. An Effective Model for the Simulation of Transpiration Cooling [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2064-2092. |
[3] | Michel Bergmann, Afaf Bouharguane, Angelo Iollo, Alexis Tardieu. High Order ADER-IPDG Methods for the Unsteady Advection-Diffusion Equation [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1954-1977. |
[4] | Lorenzo Micalizzi, Davide Torlo. A New Efficient Explicit Deferred Correction Framework: Analysis and Applications to Hyperbolic PDEs and Adaptivity [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1629-1664. |
[5] | Rémi Abgrall, Fatemeh Nassajian Mojarrad. An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 963-991. |
[6] | Mengjiao Jiao, Yan Jiang, Mengping Zhang. A Provable Positivity-Preserving Local Discontinuous Galerkin Method for the Viscous and Resistive MHD Equations [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 279-310. |
[7] | Kiera van der Sande, Daniel Appelö, Nathan Albin. Fourier Continuation Discontinuous Galerkin Methods for Linear Hyperbolic Problems [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1385-1405. |
[8] | Gaspar J. Machado, Stéphane Clain, Raphaël Loubère. A Posteriori Stabilized Sixth-Order Finite Volume Scheme with Adaptive Stencil Construction: Basics for the 1D Steady-State Hyperbolic Equations [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 751-775. |
[9] | Zepeng Liu, Yan Jiang, Mengping Zhang, Qingyuan Liu. High Order Finite Difference WENO Methods for Shallow Water Equations on Curvilinear Meshes [J]. Communications on Applied Mathematics and Computation, 2023, 5(1): 485-528. |
[10] | R. Abgrall. A Combination of Residual Distribution and the Active Flux Formulations or a New Class of Schemes That Can Combine Several Writings of the Same Hyperbolic Problem: Application to the 1D Euler Equations [J]. Communications on Applied Mathematics and Computation, 2023, 5(1): 370-402. |
[11] | M. Semplice, E. Travaglia, G. Puppo. One- and Multi-dimensional CWENOZ Reconstructions for Implementing Boundary Conditions Without Ghost Cells [J]. Communications on Applied Mathematics and Computation, 2023, 5(1): 143-169. |
[12] | Yu Pan, Zhen-Guo Yan, Joaquim Peiró, Spencer J. Sherwin. Development of a Balanced Adaptive Time-Stepping Strategy Based on an Implicit JFNK-DG Compressible Flow Solver [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 728-757. |
[13] | Giacomo Albi, Lorenzo Pareschi. High Order Semi-implicit Multistep Methods for Time-Dependent Partial Diferential Equations [J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 701-718. |
[14] | Oleksii Beznosov, Daniel Appel?. Hermite-Discontinuous Galerkin Overset Grid Methods for the Scalar Wave Equation [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 391-418. |
[15] | Yonggui Yan, Jiwei Zhang, Chunxiong Zheng. Numerical Computations of Nonlocal Schrödinger Equations on the Real Line [J]. Communications on Applied Mathematics and Computation, 2020, 2(2): 241-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||