1. Achdou, Y., Pironneau, O., Valentin, F.: Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147, 187-218 (1998) 2. Bangerth, W., Hartmann, R., Kanschat, G.: Deal.II-a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), 24-12427 (2007) 3. Bramkamp, F., Lamby, P., Müller, S.: An adaptive multiscale finite volume solver for unsteady and steady state flow computations. J. Comput. Phys. 197(2), 460-490 (2004) 4. Carraro, T., Goll, C., Marciniak-Czochra, A., Mikelic, A.: Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization. Comput. Methods Appl. Mech. Eng. 292, 195-220 (2015) 5. Dahmen, W., Gerber, V., Gotzen, T., Müller, S., Rom, M., Windisch, C.: Numerical simulation of transpiration cooling with a mixture of thermally perfect gases. In: Proceedings of the Jointly Organized WCCM XI-ECCM V-ECFD VI 2014 Congress, Barcelona, pp. 3012-3023 (2014) 6. Dahmen, W., Gotzen, T., Müller, S., Rom, M.: Numerical simulation of transpiration cooling through porous material. Int. J. Numer. Methods Fluids 76(6), 331-365 (2014) 7. Dahmen, W., Müller, S., Rom, M., Schweikert, S., Selzer, M., von Wolfersdorf, J.: Numerical boundary layer investigations of transpiration-cooled turbulent channel flow. Int. J. Heat Mass Transf. 86, 90-100 (2015) 8. Deolmi, G., Dahmen, W., Müller, S.: Effective boundary conditions for compressible flows over rough boundaries. Math. Model. Methods Appl. Sci. 25(7), 1257-1297 (2015) 9. Deolmi, G., Dahmen, W., Müller, S.: Effective boundary conditions: a general strategy and application to compressible flows over rough boundaries. Commun. Comput. Phys. 21(2), 358-400 (2017) 10. Deolmi, G., Müller, S.: A two-step model order reduction method to simulate a compressible flow over an extended rough surface. Math. Comput. Simul. 150, 49-65 (2018) 11. Gotzen, T.: Numerical Investigation of Film and Transpiration Cooling. PhD thesis, RWTH Aachen University (2013) 12. Herbertz, A., Selzer, M.: Analysis of coolant mass flow requirements for transpiration cooled ceramic thrust chambers. Trans. JSASS Aerosp. Tech. Japan 12(29), 31-39 (2014) 13. Jäger, W., Mikelic, A.: Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp. Porous Media 78(3), 489-508 (2009) 14. Jiang, P., Yu, L., Sun, J., Wang, Y.: Experimental and numerical investigation of convection heat transfer in transpiration cooling. Appl. Therm. Eng. 24, 1271-1289 (2004) 15. König, V.: Effective Boundary Conditions for Transpiration Cooling Applications. PhD thesis, RWTH Aachen University (2023) 16. König, V., Rom, M., Müller, S.: A coupled two-domain approach for transpiration cooling. In: Adams, N.A., Schröder, W., Radespiel, R., Haidn, O.J., Sattelmayer, T., Stemmer, C., Weigand, B. (eds.) Future Space-Transport-System Components Under High Thermal and Mechanical Loads: Results from the DFG Collaborative Research Center TRR40, pp. 33-49. Springer, Cham (2021) 17. König, V., Rom, M., Müller, S., Schweikert, S., Selzer, M., von Wolfersdorf, J.: Numerical and experimental investigation of transpiration cooling with Carbon/Carbon characteristic outflow distributions. J. Thermophys. Heat Transf. 33(2), 449-461 (2019) 18. Lacis, U., Bagheri, S.: A framework for computing effective boundary conditions at the interface between free fluid and a porous medium. J. Fluid Mech. 812, 866-889 (2017) 19. Langener, T., von Wolfersdorf, J., Selzer, M., Hald, H.: Experimental investigations of transpiration cooling applied to C/C material. Int. J. Therm. Sci. 54, 70-81 (2012) 20. Linn, J., Keller, M., Kloker, M.J.: Effects of Inclined Blowing on Effusion Cooling in a Mach-2.67 Boundary Layer. Annual Report SFB TRR40 2010. Munich (2010) 21. Linn, J., Kloker, M.J.: Numerical investigations of film cooling and its influence on the hypersonic boundary-layer flow. In: Gülhan, A. (ed.) RESPACE-Key Technologies for Reusable Space Systems, NNFM, vol. 98, pp. 151-169. Springer (2008) 22. Linn, J., Kloker, M.J.: Effects of wall-temperature conditions on effusion cooling in a Mach-2.67 boundary layer. AIAA J. 49(2), 299-307 (2011) 23. Liu, Y., Jiang, P., Xiong, Y., Wang, Y.: Experimental and numerical investigation of transpiration cooling for sintered porous flat plates. Appl. Therm. Eng. 50, 997-1007 (2013) 24. Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, Cham (2013) 25. Ortelt, M., Hald, H., Herbertz, A., Müller, I.: Advanced design concepts for ceramic thrust chamber components of rocket engines. In: 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich (2013) 26. Rom, M., Müller, S.: Derivation and analysis of a 1D porous medium flow solver embedded in a twodomain model for 2D and 3D transpiration cooling. Int. J. Heat Mass Transf. 195, 123127 (2022) 27. Schweikert, S., von Wolfersdorf, J., Selzer, M., Hald, H.: Experimental investigation on velocity and temperature distributions of turbulent cross flows over transpiration cooled C/C wall segments. In: 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich (2013) 28. Selzer, M., Langener, T., Hald, H., von Wolfersdorf, J.: Production and characterization of porous C/C material. Annual Report SFB TRR40. Munich (2009) 29. Steins, E., Bui-Thanh, T., Herty, M., Müller, S.: Probabilistic constrained Bayesian inversion for transpiration cooling. Int. J. Numer. Methods Fluids 94(12), 2020-2039 (2022) 30. Yang, G., Coltman, E., Weishaupt, K., Terzis, A., Helmig, R., Weigand, B.: On the Beavers-Joseph interface condition for non-parallel coupled channel flow over a porous structure at high Reynolds numbers. Transp. Porous Media 128(2), 431-457 (2019) 31. Yang, L., Min, Z., Yue, T., Rao, Y., Chyu, M.K.: High resolution cooling effectiveness reconstruction of transpiration cooling using convolution modeling method. Int. J. Heat Mass Transf. 133, 1134-1144 (2019) |