1. Alkämper, M., Magiera, J.: Interface preserving moving mesh (Code). DaRUS (2021). https:// doi. org/ 10. 18419/ darus- 1671 2. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, 2nd edn. Oxford University Press Inc, Oxford (2017) 3. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139-165 (1998) 4. Andrianov, N., Warnecke, G.: The Riemann problem for the Baer-Nunziatio model of two-phase flows. J. Comput. Phys. 195, 434-464 (2004) 5. Berthelot, D.: Sur le mélange des gaz. Comptes rendus hebdomadaires des séances de l’Académie des Sciences 126, 1703-1706 (1898) 6. Bothe, D., Dreyer, W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226(6), 1757-1805 (2023) 7. Chalons, C., Rohde, C., Wiebe, M.: A finite volume method for undercompressive shock waves in two space dimensions. Math. Model. Numer. Anal. 51, 1987-2015 (2017) 8. Colombo, R.M., Priuli, F.S.: Characterization of Riemann solvers for the two phase p-system. Commun. Partial Differ. Equ. 28(7/8), 1371-1389 (2003) 9. Dreyer, W., Giesselmann, J., Kraus, C.: A compressible mixture model with phase transition. Physica D 273/274, 1-13 (2014) 10. Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3), 367-450 (2007) 11. Faccanoni, G., Kokh, S., Allaire, G.: Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM Math. Model. Numer. Anal. 46(5), 1029-1054 (2012) 12. Fechter, S., Munz, C.-D., Rohde, C., Zeiler, C.: A sharp interface method for compressible liquidvapor flow with phase transition and surface tension. J. Comput. Phys. 336, 347-374 (2017) 13. Frezzotti, A., Barbante, P.: Simulation of shock induced vapor condensation flows in the Lennard-Jones fluid by microscopic and continuum models. Phys. Fluids 32(12), 122106 (2020) 14. Ghazi, H., James, F., Mathis, H.: A nonisothermal thermodynamical model of liquid-vapor interaction with metastability. Discrete Contin. Dyn. Syst. Ser. B 26(5), 2371-2409 (2021) 15. Gross, J., Sadowski, G.: Perturbed-Chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40(4), 1244-1260 (2001) 16. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. 12, 399-450 (2003) 17. Han, E., Hantke, M., Warnecke, G.: Criteria for nonuniqueness of Riemann solutions to compressible duct flows. Z. fur Angew. Math. Phys. Mech. 93(6/7), 465-475 (2013) 18. Hantke, M., Matern, C., Warnecke, G., Yaghi, H.: A new method to discretize a model for isothermal flow with a multi-component equation of state. J. Comput. Appl. 422, 114876 (2023) 19. Hantke, M., Müller, S.: Analysis and simulation of a new multi-component two-phase flow model with phase transitions and chemical reactions. Q. Appl. Math. 76(2), 253-287 (2018) 20. Hantke, M., Müller, S., Richter, P.: Closure conditions for non-equilibrium multi-component models. Contin. Mech. Thermodyn. 28, 1157-1189 (2016)21. Hantke, M., Thein, F.: On the impossibility of first-order phase transitions in systems modeled by the full Euler equations. Entropy 21(11), 1039 (2019) 22. Hitz, T., Jöns, S., Heinen, M., Vrabec, J., Munz, C.-D.: Comparison of macro- and microscopic solutions of the Riemann problem II. Two-phase shock tube. J. Comput. Phys. 429, 110027 (2020) 23. Janzen, T.: On diffusion coefficients of multicomponent liquid mixtures predicted by equilibrium molecular dynamics simulation. Doctoral thesis, Technische Universität Berlin, Berlin (2019) 24. Keim, J., Munz, C.-D., Rohde, C.: A relaxation model for the non-isothermal Navier-Stokes-Korteweg equations in confined domains. J. Comput. Phys. 474, 111830 (2023) 25. Krishna, R., Wesselingh, J.A.: The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 52(6), 861-911 (1997) 26. Lorentz, H.A.: Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Annalen der Physik 248(1), 127-136 (1881) 27. Ma, P.C., Lv, Y., Ihme, M.: An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys. 340, 330-357 (2017) 28. Magiera, J.: A molecular-continuum multiscale solver for liquid-vapor flow: modeling and numerical simulation. PhD thesis, University of Stuttgart, Stuttgart (2021) 29. Magiera, J.: Data sets for a molecular-continuum multiscale solver for liquid-vapor flow: modeling and numerical simulation. DaRUS (2021). https:// doi. org/ 10. 18419/ darus- 1258 30. Magiera, J., Ray, D., Hesthaven, J.S., Rohde, C.: Constraint-aware neural networks for Riemann problems. J. Comput. Phys. 409, 109345 (2020) 31. Magiera, J., Rohde, C.: A particle-based multiscale solver for compressible liquid-vapor flow. In: Klingenberg, C., Westdickenberg, M. (eds.) Theory, Numerics and Applications of Hyperbolic Problems II, pp. 291-304. Springer, Cham (2018) 32. Magiera, J., Rohde, C.: A molecular-continuum multiscale model for inviscid liquid-vapor flow with sharp interfaces. J. Comput. Phys. 469, 111551 (2022) 33. Magiera, J., Rohde, C.: Analysis and numerics of sharp and diffuse interface models for droplet dynamics. In: Schulte, K., Tropea, C., Weigand, B. (eds.) Droplet Dynamics Under Extreme Ambient Conditions. Fluid Mechanics and Its Applications, pp. 67-86. Springer, Cham (2022) 34. Mitchell, D.P.: Spectrally optimal sampling for distribution ray tracing. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH 91, pp. 157-164. ACM, New York (1991) 35. Ponte, M., Streett, W.B., Miller, R.C., Staveley, L.A.K.: An experimental study of the equation of state of liquid (argon + methane), and the effect of pressure on their excess thermodynamic functions. J. Chem. Thermodyn. 13(8), 767-781 (1981) 36. Rohde, C., Zeiler, C.: On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension. Z. fur Angew. Math. Phys. 69(3), 76 (2018) 37. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425-467 (2023) 38. Saurel, R., Petitpas, F., Abgrall, R.: Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607, 313-350 (2008) 39. Shen, Y., Ren, Y., Ding, H.: A 3D conservative sharp interface method for simulation of compressible two-phase flows. J. Comput. Phys. 403, 109107-10919 (2020) 40. Truskinovsky, L.: Kinks versus shocks. In: Shock Induced Transitions and Phase Structures in General Media. IMA Volumes in Mathematics and Its Applications, vol. 52, pp. 185-229. Springer, New York (1993) 41. Vrabec, J., Fischer, J.: Vapour liquid equilibria of mixtures from the NpT plus test particle method. Mol. Phys. 85(4), 781-792 (1995) 42. Vrabec, J., Lotfi, A., Fischer, J.: Vapour liquid equilibria of Lennard-Jones model mixtures from the NpT plus test particle method. Fluid Phase Equilib. 112(2), 173-197 (1995) 43. Zein, A., Hantke, M., Warnecke, G.: Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229(8), 2964-2998 (2010) |