1. Aftosmis, M.J., Berger, M.J., Melton, J.E.: Robust and efficient Cartesian mesh generation for component-based geometry. AIAA J. 36(6), 952-960(1998) 2. Almgren, A.S., Bell, J.B., Szymczak, W.G.: A numerical method for the incompressible Navier-Stokes equations based on an approximate projection. SIAM J. Sci. Comput. 17(2), 358-369(1996) 3. Barth, T.J.: A 3-D least-squares upwind Euler solver for unstructured meshes. In: Napolitano, M., Sabetta, F.(eds.) Thirteenth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol. 414, pp. 240-244. Springer, Berlin, Heidelberg, New York(2005) 4. Bell, J.B.B. et al.: BoxLib User's Guide. Technical report, CCSE, Lawrence Berkeley National Laboratory(2012). https:// ccse. lbl. gov/ BoxLib/ BoxLi bUser sGuide. pdf 5. Berger, M., Aftosmis, M.J., Murman, S.M.: Analysis of slope limiters on irregular grids. In: 43rd AIAA Aerospace Sciences Meeting, Reno, NV. AIAA 2005-0490(2005) 6. Berger, M., Giuliani, A.: A state redistribution algorithm for finite volume schemes on cut cell meshes. J. Comput. Phys. 428, 1-34(2021) 7. Berger, M.J., Helzel, C.: A simplified h-box method for embedded boundary grids. SIAM J. Sci. Comput. 34, 861-888(2012) 8. Berger, M.J., Helzel, C., LeVeque, R.: H-box method for the approximation of hyperbolic conservation laws on irregular grids. SIAM J. Numer. Anal. 41, 893-918(2003) 9. Burman, E.: Ghost penalty. C. R. Math. Acad. Sci. Paris 348(21), 1217-1220(2010) 10. Chern, I.-L., Colella, P.: A Conservative Front Tracking Method for Hyperbolic Conservation Laws. Technical report. Lawrence Livermore National Laboratory, Livermore, CA(1987) 11. Colella, P.: A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. 6, 104- 117(1985) 12. Colella, P., Graves, D.T., Keen, B.J., Modiano, D.: A Cartesian grid embedded boundary method for hyperbolic conservation laws. J. Comput. Phys. 211(1), 347-366(2006) 13. Collins, J.P., Colella, P., Glaz, H.M.: An implicit-explicit Eulerian Godunov scheme for compressible flow. J. Comput. Phys. 116(2), 195-211(1995) 14. Engwer, C., May, S., Nüßing, A., Streitbürger, F.: A stabilized DG cut cell method for discretizing the linear transport equation. SIAM J. Sci. Comput. 42(6), 3677-3703(2020) 15. Frolkovič, P., Krišková, S., Rohová, M., Žeravý, M.: Semi-implicit methods for advection equations with explicit forms of numerical solution. Jpn. J. Ind. Appl. Math. 39, 843-867(2022) 16. Fu, P., Frachon, T., Kreiss, G., Zahedi, S.: High order discontinuous cut finite element methods for linear hyperbolic conservation laws with an interface. J. Sci. Comput. 90, 84(2022) 17. Fu, P., Kreiss, G.: High order cut discontinuous Galerkin methods for hyperbolic conservation laws in one space dimension. SIAM J. Sci. Comput. 43(4), 2404-2424(2021) 18. Giuliani, A.: A two-dimensional stabilized discontinuous Galerkin method on curvilinear embedded boundary grids. J. Sci. Comput. 44, 389-415(2022) 19. Gokhale, N., Nikiforakis, N., Klein, R.: A dimensionally split Cartesian cut cell method for hyperbolic conservation laws. J. Comput. Phys. 364, 186-208(2018) 20. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73-85(1998) 21. Helzel, C., Berger, M.J., LeVeque, R.: A high-resolution rotated grid method for conservation laws with embedded geometries. SIAM J. Sci. Comput. 26, 785-809(2005) 22. Helzel, C., Kerkmann, D.: An active flux method for cut cell grids. In: Klöfkorn, R., Keilegavlen, E., Radu, A.F., Fuhrmann, J.(eds.) Finite Volumes for Complex Applications IX-Methods, Theoretical Aspects, Examples, pp. 507-515. Springer, Cham, Switzerland(2020) 23. http:// facul ty. cse. tamu. edu/ davis/ suite sparse. html 24. http:// people. nas. nasa. gov/~aftos mis/ cart 25. Klein, R., Bates, K.R., Nikiforakis, N.: Well-balanced compressible cut-cell simulation of atmospheric flow. Philos. Trans. Roy. Soc. A 367, 4559-4575(2009) 26. Krivodonova, L., Qin, R.: A discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries. J. Comput. Sci. 4(1/2), 24-35(2013) 27. Laakmann, F.: Finite-Volumen-Methode zur Lösung von Hyperbolischen Erhaltungsgleichungen auf Eingebetteten Geometrien. Master's thesis, TU Dortmund(2018) 28. Leer, B.: Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's methods. J. Comput. Phys. 32, 101-136(1979) 29. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK(2002) 30. May, S.: Embedded Boundary Methods for Flow in Complex Geometries. PhD thesis, Courant Institute of Mathematical Sciences, New York University(2013) 31. May, S.: Time-dependent conservation laws on cut cell meshes and the small cell problem. In: Klöfkorn, R., Keilegavlen, E., Radu, A.F., Fuhrmann, J.(eds.) Finite Volumes for Complex Applications IX-Methods, Theoretical Aspects, Examples, pp. 39-53. Springer, Cham, Switzerland(2020) 32. May, S., Berger, M.J.: Two-dimensional slope limiters for finite volume schemes on non-coordinatealigned meshes. SIAM J. Sci. Comput. 35, 2163-2187(2013) 33. May, S., Berger, M.J.: A mixed explicit implicit time stepping scheme for Cartesian embedded boundary meshes. In: Fuhrmann, J., Ohlberger, M., Rohde, C.(eds.) Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, pp. 393-400. Springer, Cham, Heidelberg, New York, Dordrecht, London(2014) 34. May, S., Berger, M.J.: An explicit implicit scheme for cut cells in embedded boundary meshes. J. Sci. Comput. 71, 919-943(2017) 35. May, S., Streitbürger, F.: DoD stabilization for non-linear hyperbolic conservation laws on cut cell meshes in one dimension. Appl. Math. Comput. 419, 126854(2022) 36. May, S., Thein, F.: Explicit implicit domain splitting for two phase flows with phase transition. Phys. Fluids 35, 016108(2023) 37. Mikula, K., Ohlberger, M., Urbán, J.: Inflow-implicit/outflow-explicit finite volume methods for solving advection equations. Appl. Numer. Math. 85, 16-37(2014) 38. Müller, B., Krämer-Eis, S., Kummer, F., Oberlack, M.: A high-order discontinuous Galerkin method for compressible flows with immersed boundaries. Int. J. Numer. Methods Eng. 110(1), 3-30(2016) 39. Muscat, L., Puigt, G., Montagnac, M., Brenner, P.: A coupled implicit-explicit time integration method for compressible unsteady flows. J. Comput. Phys. 398, 108883(2019) 40. Quirk, J.J.: An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Comput. Fluids 23(1), 125-142(1994). https:// doi. org/ 10. 1016/ 0045- 7930(94) 90031-0 41. Wendroff, B., White, A.B.: A supraconvergent scheme for nonlinear hyperbolic systems. Comput. Math. Appl. 18(8), 761-767(1989) |