Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5): 1617-1638.doi: 10.1007/s42967-023-00354-x
• ORIGINAL PAPERS • Previous Articles
Qin-Qin Shen1, Geng-Chen Yang2, Chen-Can Zhou1
Received:2023-08-18
Revised:2023-11-21
Accepted:2023-11-24
Online:2024-05-07
Published:2024-05-07
Contact:
Chen-Can Zhou,E-mail:zhouchencan@ntu.edu.cn
E-mail:zhouchencan@ntu.edu.cn
Supported by:Qin-Qin Shen, Geng-Chen Yang, Chen-Can Zhou. Convergence Analysis of the Projected SOR Iteration Method for Horizontal Linear Complementarity Problems[J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1617-1638.
| [1] Bai, Z.-Z.: On the monotone convergence of the projected iteration methods for linear complementarity problem. Numer. Math. J. Chin. Univ. (Engl. Ser.) 5(2), 228-233 (1996) [2] Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21(1), 67-78 (1999) [3] Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17(6), 917-933 (2010) [4] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603-626 (2003) [5] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [6] Bai, Z.-Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numer. Math. 102(1), 1-38 (2005) [7] Bai, Z.-Z., Yin, J.-F., Su, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24(4), 539-552 (2006) [8] Cao, Y., Du, J., Niu, Q.: Shift-splitting preconditioners for saddle point problems. J. Comput. Appl. Math. 272, 239-250 (2014) [9] Cao, Y., Yang, G.-C., Shen, Q.-Q.: Convergence analysis of projected SOR iteration method for a class of vertical linear complementarity problems. Comput. Appl. Math. 42(4), 191 (2023) [10] Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. J. Comb. Theory A. 8(1), 79-90 (1970) [11] Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992) [12] Fujisawa, T., Kuh, E.S.: Piecewise-linear theory of nonlinear networks. SIAM J. Appl. Math. 22(2), 307-328 (1972) [13] Fujisawa, T., Kuh, E.S.: A sparse matrix method for analysis of piecewise-linear resistive networks. IEEE Trans. Circ. Theory 19(6), 571-584 (1972) [14] Gao, X.-B., Wang, J.: Analysis and application of a one-layer neural network for solving horizontal linear complementarity problems. Int. J. Comput. Intell. Syst. 7(4), 724-732 (2014) [15] Gowda, M.S.: Reducing a monotone horizontal LCP to an LCP. Appl. Math. Lett. 8(1), 97-100 (1995) [16] Huang, B.-H., Li, W.: A modified SOR-like method for absolute value equations associated with second order cones. J. Comput. Appl. Math. 400, 113745 (2022) [17] Koulisianis, M.D., Papatheodorou, T.S.: Improving projected successive overrelaxation method for linear complementarity problems. Appl. Numer. Math. 45(1), 29-40 (2003) [18] Mezzadri, F., Galligani, E.: An inexact Newton method for solving complementarity problems in hydrodynamic lubrication. Calcolo 55, 1 (2018) [19] Mezzadri, F., Galligani, E.: Splitting methods for a class of horizontal linear complementarity problems. J. Optim. Theory Appl. 180, 500-517 (2019) [20] Mezzadri, F., Galligani, E.: Modulus-based matrix splitting methods for horizontal linear complementarity problems. Numer. Algorithms 83(1), 201-219 (2020) [21] Mezzadri, F., Galligani, E.: On the convergence of modulus-based matrix splitting methods for horizontal linear complementarity problems in hydrodynamic lubrication. Math. Comput. Simul. 176, 226-242 (2020) [22] Mezzadri, F., Galligani, E.: A generalization of irreducibility and diagonal dominance with applications to horizontal and vertical linear complementarity problems. Linear Algebra Appl. 621, 214-234 (2021) [23] Ralph, D.: A stable homotopy approach to horizontal linear complementarity problems. Control Cybern. 31(3), 575-600 (2002) [24] Sznajder, R., Gowda, M.S.: Generalizations of P0-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223/224, 695-715 (1995) [25] Zhang, Y.: On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J. Opt. 4(1), 208-227 (1994) [26] Zheng, H., Vong, S.: On the modulus-based successive overrelaxation iteration method for horizontal linear complementarity problems arising from hydrodynamic lubrication. Appl. Math. Comput. 402, 126165 (2021) |
| [1] | Zhao-Zheng Liang, Jun-Lin Tian, Hong-Yi Wan. A Note on Chebyshev Accelerated PMHSS Iteration Method for Block Two-by-Two Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1242-1263. |
| [2] | Huaijun Yang. Unconditionally Superconvergence Error Analysis of an Energy-Stable and Linearized Galerkin Finite Element Method for Nonlinear Wave Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1264-1281. |
| [3] | Lu-Xin Wang, Qin-Qin Shen, Yang Cao. Modulus-Based Matrix Splitting Iteration Method for Horizontal Quasi-complementarity Problem [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1308-1332. |
| [4] | Xing Liu. An Accelerated Convergence Scheme for Solving Stochastic Fractional Diffusion Equation [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1444-1461. |
| [5] | Jing Chen, Qi Wang. Numerical Stability and Convergence for Delay Space-Fractional Fisher Equations with Mixed Boundary Conditions in Two Dimensions [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1462-1488. |
| [6] | Xuan Zhao, Zhongqin Xue. Efficient Variable Steps BDF2 Scheme for the Two-Dimensional Space Fractional Cahn-Hilliard Model [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1489-1515. |
| [7] | Long-Ze Tan, Ming-Yu Deng, Xue-Ping Guo. On Multi-step Greedy Kaczmarz Method for Solving Large Sparse Consistent Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1580-1597. |
| [8] | Yujian Cao, Jianguo Huang, Haoqin Wang. A Hybrid Iterative Method for Elliptic Variational Inequalities of the Second Kind [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 910-928. |
| [9] | Yun-Xia Tan, Zheng-Da Huang. On a Nonlinear Fast Deterministic Block Kaczmarz Method for Solving Nonlinear Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 954-969. |
| [10] | Gang Bao, Peijun Li, Xiaokai Yuan. Convergence of the PML Method for the Biharmonic Wave Scattering Problem in Periodic Structures [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 1122-1145. |
| [11] | Shipeng Mao, Jiaao Sun. Error Estimates of Finite Element Method for the Incompressible Ferrohydrodynamics Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 485-535. |
| [12] | Gui-Lin Yan, Yu-Jiang Wu, Bo Deng. Improvement of Convergence of One- and Two-Step MSM Iteration Methods for Nondifferentiable Nonlinear Complementarity Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 733-758. |
| [13] | Mengfei Wang, Yan Xu. Superconvergence of UWLDG Method for One-Dimensional Linear Sixth-Order Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 771-795. |
| [14] | Ren Liu, Lifei Wu. Numerical Approach for Solving Two-Dimensional Time-Fractional Fisher Equation via HABC-N Method [J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 315-346. |
| [15] | Pavel Bakhvalov, Mikhail Surnachev. On the Order of Accuracy of Edge-Based Schemes: a Peterson-Type Counter-Example [J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 372-391. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||