Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (4): 1308-1332.doi: 10.1007/s42967-023-00311-8
• ORIGINAL PAPERS • Previous Articles Next Articles
Lu-Xin Wang1,2, Qin-Qin Shen3, Yang Cao1,3
Received:2023-06-07
Revised:2023-08-18
Accepted:2023-08-20
Online:2023-11-23
Published:2023-11-23
Supported by:CLC Number:
Lu-Xin Wang, Qin-Qin Shen, Yang Cao. Modulus-Based Matrix Splitting Iteration Method for Horizontal Quasi-complementarity Problem[J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1308-1332.
| [1] Bai, Z.-Z.: A class of two-stage iterative methods for systems of weakly nonlinear equations. Numer. Algorithms 14, 295-319 (1997) [2] Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67-78 (1999) [3] Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917-933 (2010) [4] Bai, Z.-Z., Buccini, A., Hayami, K., Reichel, L., Yin, J.-F., Zheng, N.: Modulus-based iterative methods for constrained Tikhonov regularization. J. Comput. Appl. Math. 319, 1-13 (2017) [5] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603-626 (2003) [6] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [7] Bai, Z.-Z., Yang, X.: On HSS-based iteration methods for weakly nonlinear systems. Appl. Numer. Math. 59, 2923-2936 (2009) [8] Bai, Z.-Z., Yin, J.-F., Su, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24, 539-552 (2006) [9] Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62, 59-77 (2013) [10] Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425-439 (2013) [11] Bai, Z.-Z., Zhang, L.-L.: Modulus-based multigrid methods for linear complementarity problems. Numer. Linear Algebra Appl. 24, e2105 (2017) [12] Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994) [13] Cao, Y., Du, J., Niu, Q.: Shift-splitting preconditioners for saddle point problems. J. Comput. Appl. Math. 272, 239-250 (2014) [14] Cao, Y., Wang, A.: Two-step modulus-based matrix splitting iteration methods for implicit complementarity problems. Numer. Algorithms 82, 1377-1394 (2019) [15] Chen, F., Zhu, Y., Muratova, G.V.: Two-step modulus-based matrix splitting iteration methods for retinex problem. Numer. Algorithms 88, 1989-2005 (2021) [16] Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. SIAM, Philadelphia (2009) [17] Cvetković, L., Kostić, V., Šanca, E.: A wider convergence area for the MSTMAOR iteration methods for LCP. Numer. Algorithms 71, 77-88 (2016) [18] Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129-143 (2009) [19] Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669-713 (1997) [20] Frommer, A., Szyld, D.B.: H-splittings and two-stage iterative methods. Numer. Math. 63, 345-356 (1992) [21] He, J., Zheng, H., Vong, S.: Modulus-based matrix splitting iteration methods with new splitting scheme for horizontal implicit complementarity problems. Linear Multilinear A (2022). https://doi.org/10.1080/03081087.2022.2104789 [22] He, J., Zheng, H., Vong, S.: Fast modulus-based matrix splitting iteration methods for implicit complementarity problems. Appl. Numer. Math. 182, 28-41 (2022) [23] Hong, J.-T., Li, C.-L.: Modulus-based matrix splitting iteration methods for a class of implicit complementarity problems. Numer. Linear Algebra Appl. 23, 629-641 (2016) [24] Horn, R., Johnson, C.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013) [25] Hu, J.-G.: Estimates of ‖B-1A‖∞ and their applications (in Chinese). Math. Numer. Sin. 3, 272-282 (1982) [26] Li, R., Yin, J.-F.: On the convergence of modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems with H+-matrices. J. Comput. Appl. Math. 342, 202-209 (2018) [27] Li, Z.-Z., Zhang, H., Ou-Yang, L.: The selection of the optimal parameter in the modulus based matrix splitting algorithm for linear complementarity problems. Comput. Optim. Appl. 80, 617-638 (2021) [28] Liao, S.-W., Zhang, G.-F., Liang, Z.-Z.: A preconditioned general modulus-based matrix splitting iteration method for solving horizontal linear complementarity problems. Numer. Algorithms 93, 919-947 (2023) [29] Mezzadri, F., Galligani, E.: Modulus-based matrix splitting methods for horizontal linear complementarity problems. Numer. Algorithms 83, 201-219 (2020) [30] Mezzadri, F., Galligani, E.: Modulus-based matrix splitting methods for a class of horizontal nonlinear complementarity problems. Numer. Algorithms 87, 667-687 (2021) [31] Noor, M.A.: The quasi-complementarity problem. J. Math. Anal. Appl. 130, 344-353 (1988) [32] Noor, M.A.: Fixed point approach for complementarity problems. J. Math. Anal. Appl. 133, 437-448 (1988) [33] Schäfer, U.: On the modulus algorithm for the linear complementarity problem. Oper. Res. Lett. 32, 350-354 (2004) [34] Shi, Q., Shen, Q.-Q., Tang, T.-P.: A class of two-step modulus-based matrix splitting iteration methods for quasi-complementarity problems. Comput. Appl. Math. 39, 11 (2020) [35] Sun, L., Huang, Y.-M.: A modulus-based multigrid method for image retinex. Appl. Numer. Math. 164, 199-210 (2021) [36] Varga, R.S.: Matrix Iterative Analysis. Springer, Heidelberg (2000) [37] Wang, A., Cao, Y., Shi, Q.: Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems. J. Inequal. Appl. 2018, 2 (2018) [38] Wu, S.-L., Guo, P.: Modulus-based matrix splitting algorithms for quasi-complementarity problems. Appl. Numer. Math. 132, 127-137 (2018) [39] Zhan, W.-P., Zhou, S.-Z., Zen, J.-P.: Iterative methods for a kind of quasi-complementarity problems. Acta Math. Appl. Sin. 23, 551-556 (2000) [40] Zhang, L.-L.: Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algorithms 57, 83-99 (2011) [41] Zhang, L.-L., Ren, Z.-R.: Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 26, 638-642 (2013) [42] Zheng, H., Vong, S.: A modified modulus-based matrix splitting iteration method for solving implicit complementarity problems. Numer. Algorithms 82, 573-592 (2019) [43] Zheng, H., Vong, S.: A two-step modulus-based matrix splitting iteration method for horizontal linear complementarity problems. Numer. Algorithms 86, 1791-1810 (2021) [44] Zheng, H., Vong, S., Liu, L.: The relaxation modulus-based matrix splitting iteration method for solving a class of nonlinear complementarity problems. Int. J. Comput. Math. 96, 1648-1667 (2019) [45] Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer. Algorithms 64, 245-262 (2013) [46] Zhou, C.-C., Qiu, J., Cao, Y., Yang, G.-C., Shen, Q.-Q., Shi, Q.: An accelerated modulus-based matrix splitting iteration method for mixed-size cell circuits legalization. Integr. VLSI J. 88, 20-31 (2023) [47] Zhou, C.-C., Shen, Q.-Q., Yang, G.-C., Shi, Q.: A general modulus-based matrix splitting method for quasi-complementarity problem. AIMS Math. 7, 10994-11014 (2022) |
| [1] | Zhao-Zheng Liang, Jun-Lin Tian, Hong-Yi Wan. A Note on Chebyshev Accelerated PMHSS Iteration Method for Block Two-by-Two Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1242-1263. |
| [2] | Huaijun Yang. Unconditionally Superconvergence Error Analysis of an Energy-Stable and Linearized Galerkin Finite Element Method for Nonlinear Wave Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1264-1281. |
| [3] | Xing Liu. An Accelerated Convergence Scheme for Solving Stochastic Fractional Diffusion Equation [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1444-1461. |
| [4] | Jing Chen, Qi Wang. Numerical Stability and Convergence for Delay Space-Fractional Fisher Equations with Mixed Boundary Conditions in Two Dimensions [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1462-1488. |
| [5] | Xuan Zhao, Zhongqin Xue. Efficient Variable Steps BDF2 Scheme for the Two-Dimensional Space Fractional Cahn-Hilliard Model [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1489-1515. |
| [6] | Long-Ze Tan, Ming-Yu Deng, Xue-Ping Guo. On Multi-step Greedy Kaczmarz Method for Solving Large Sparse Consistent Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1580-1597. |
| [7] | Yujian Cao, Jianguo Huang, Haoqin Wang. A Hybrid Iterative Method for Elliptic Variational Inequalities of the Second Kind [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 910-928. |
| [8] | Yun-Xia Tan, Zheng-Da Huang. On a Nonlinear Fast Deterministic Block Kaczmarz Method for Solving Nonlinear Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 954-969. |
| [9] | Gang Bao, Peijun Li, Xiaokai Yuan. Convergence of the PML Method for the Biharmonic Wave Scattering Problem in Periodic Structures [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 1122-1145. |
| [10] | Shipeng Mao, Jiaao Sun. Error Estimates of Finite Element Method for the Incompressible Ferrohydrodynamics Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 485-535. |
| [11] | Gui-Lin Yan, Yu-Jiang Wu, Bo Deng. Improvement of Convergence of One- and Two-Step MSM Iteration Methods for Nondifferentiable Nonlinear Complementarity Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 733-758. |
| [12] | Mengfei Wang, Yan Xu. Superconvergence of UWLDG Method for One-Dimensional Linear Sixth-Order Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 771-795. |
| [13] | Ren Liu, Lifei Wu. Numerical Approach for Solving Two-Dimensional Time-Fractional Fisher Equation via HABC-N Method [J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 315-346. |
| [14] | Pavel Bakhvalov, Mikhail Surnachev. On the Order of Accuracy of Edge-Based Schemes: a Peterson-Type Counter-Example [J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 372-391. |
| [15] | Jieying Zhang, Caixia Ou, Zhibo Wang, Seakweng Vong. An Order Reduction Method for the Nonlinear Caputo-Hadamard Fractional Diffusion-Wave Model [J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 392-408. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||