[1] Bai, Z.-Z.: Several splittings for non-Hermitian linear systems. Sci. China Ser. A 51(8), 1339-1348 (2008) [2] Bai, Z.-Z.: Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts. Numer. Linear Algebra Appl. 25(4), e2116 (2018) [3] Bai, Z.-Z.: A two-step matrix splitting iteration paradigm based on one single splitting for solving systems of linear equations. Numer. Linear Algebra Appl. 31(3), e2510 (2024) [4] Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87(3/4), 93-111 (2010) [5] Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 56(2), 297-317 (2011) [6] Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27(1), 1-23 (2007) [7] Bai, Z.-Z., Golub, G.H., Li, C.-K.: Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comput. 76(257), 287-298 (2007) [8] Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26(3), 844-863 (2005) [9] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603-626 (2003) [10] Bai, Z.-Z., Golub, G.H., Ng, M.K.: On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14(4), 319-335 (2007) [11] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [12] Bai, Z.-Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numer. Math. 102(1), 1-38 (2005) [13] Bai, Z.-Z., Rozložník, M.: On the numerical behavior of matrix splitting iteration methods for solving linear systems. SIAM J. Numer. Anal. 53(4), 1716-1737 (2015) [14] Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428(11/12), 2900-2932 (2008) [15] Cao, Y., Tan, W.-W., Jiang, M.-Q.: A generalization of the positive-definite and skew-Hermitian splitting iteration. Numer. Algebra Control Optim. 2(4), 811-821 (2012) [16] Cao, Z.-H.: A convergence theorem on an extrapolated iterative method and its applications. Appl. Numer. Math. 27(3), 203-209 (1998) [17] Chen, F., Li, T.-Y., Lu, K.-Y., Muratova, G.V.: Modified QHSS iteration methods for a class of complex symmetric linear systems. Appl. Numer. Math. 164, 3-14 (2021) [18] Li, B., Cui, J., Huang, Z., Xie, X.: On preconditioned MQHSS iterative method for solving a class of complex symmetric linear systems. Comput. Appl. Math. 41(6), 250 (2022) [19] Li, X., Yang, A.-L., Wu, Y.-J.: Lopsided PMHSS iteration method for a class of complex symmetric linear systems. Numer. Algorithms 66(3), 555-568 (2014) [20] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003) [21] Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000) [22] Wu, W.-T.: On minimization of upper bound for the convergence rate of the QHSS iteration method. Commun. Appl. Math. Comput. 1(2), 263-282 (2019) [23] Wu, Y.-J., Li, X., Yuan, J.-Y.: A non-alternating preconditioned HSS iteration method for non-Hermitian positive definite linear systems. Comput. Appl. Math. 36(1), 367-381 (2017) [24] Yang, A.-L., An, J., Wu, Y.-J.: A generalized preconditioned HSS method for non-Hermitian positive definite linear systems. Appl. Math. Comput. 216(6), 1715-1722 (2010) [25] Yin, J.-F., Dou, Q.-Y.: Generalized preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems. J. Comput. Math. 30(4), 404-417 (2012) [26] Zeng, M.-L.: Inexact modified QHSS iteration methods for complex symmetric linear systems of strong skew-Hermitian parts. IAENG Int. J. Appl. Math. 51(1), 109-115 (2021) |