[1] Bai, Z.-J., Bai, Z.-Z.: On nonsingularity of block two-by-two matrices. Linear Algebra Appl. 439, 2388-2404 (2013) [2] Bai, Z.-Z.: Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems. Appl. Math. Comput. 109, 273-285 (2000) [3] Bai, Z.-Z.: Construction and analysis of structured preconditioners for block two-by-two matrices. J. of Shanghai Univ. 8, 397-405 (2004) [4] Bai, Z.-Z.: Structured preconditioners for nonsingular matrices of block two-by-two structures. Math. Comput. 75, 791-815 (2006) [5] Bai, Z.-Z.: Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks. J. Comput. Appl. Math. 237, 295-306 (2013) [6] Bai, Z.-Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl. Math. 283, 71-78 (2015) [7] Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1-32 (2004) [8] Bai, Z.-Z., Ng, M.K.: On inexact preconditioners for nonsymmetric matrices. SIAM J. Sci. Comput. 26, 1710-1724 (2005) [9] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [10] Bai, Z.-Z., Tao, M.: On preconditioned and relaxed AVMM methods for quadratic programming problems with equality constraints. Linear Algebra Appl. 516, 264-285 (2017) [11] Benzi, M., Liu, J.: Block preconditioning for saddle point systems with indefinite (1,1) block. Int. J. Comput. Math. 84, 1117-1129 (2007) [12] Benzi, M., Wang, Z.: Analysis of augmented Lagrangian-based preconditioners for the steady incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 33, 2761-2784 (2011) [13] Benzi, M., Wathen, A.J.: Some preconditioning techniques for saddle point problems. Math. Ind. 13, 195-211 (2008) [14] Cao, Z.-H.: Augmentation block preconditioners for saddle point-type matrices with singular (1,1) blocks. Numer. Linear Algebra Appl. 15, 515-533 (2008) [15] Cao, Z.-H.: A note on spectrum analysis of augmentation block preconditioned generalized saddle point matrices. J. Comput. Appl. Math. 238, 109-115 (2013) [16] Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations. Numer. Math. 90, 665-688 (2002) [17] Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press, New York (2005) [18] Greif, C., Schötzau, D.: Preconditioners for saddle point linear systems with highly singular (1,1) blocks. Electron. Trans. Numer. Anal. 22, 114-121 (2006) [19] Greif, C., Schötzau, D.: Preconditioners for the discretized time-harmonic Maxwell equaitons in mixed form. Numer. Linear Algebra Appl. 14, 281-297 (2007) [20] He, J., Huang, T.-Z.: Two augmentation preconditioners for nonsymmetric and indefinite saddle point linear systems with singular (1,1) blocks. Comput. Math. Appl. 62, 87-92 (2011) [21] Huang, Z.-G., Wang, L.-G., Xu, Z., Cui, J.-J.: The improvements of the generalized shift-splitting preconditioners for non-singular and singular saddle point problems. Int. J. Comput. Math. 96, 797-820 (2019) [22] Ipsen, I.C.F.: A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput. 23, 1050-1051 (2001) [23] Li, C.-X., Wu, S.-L.: Two block triangular preconditioners for nonsymmetric saddle point problems. Appl. Math. Comput. 269, 456-463 (2015) [24] Martynova, T.S.: On augmented Lagrangian methods for saddle-point linear systems with singular or semidefinite (1,1) blocks. J. Comput. Math. 32, 297-305 (2014) [25] Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969-1972 (2000) [26] Perugia, I., Simoncini, V.: Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations. Numer. Linear Algebra Appl. 7, 585-616 (2000) [27] Rees, T., Greif, C.: A preconditioner for linear systems arising from interior optimization methods. SIAM J. Sci. Comput. 29, 1992-2007 (2007) [28] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003) [29] Shen, S.-Q., Huang, T.-Z., Zhang, J.-S.: Augmentation block triangular preconditioners for regularized saddle point problem. SIAM J. Matrix Appl. 33, 721-741 (2012) [30] Wu, S.-L., Salkuyeh, D.K.: A shift-splitting preconditioner for asymmetric saddle point problems. Comput. Appl. Math. 39, 314 (2020) [31] Zulenher, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71, 479-505 (2001) |