[1] Axelsson, O., Kucherov, A.: Real valued iterative methods for solving complex symmetric linear systems. Numer. Linear Algebra Appl. 7, 197-218 (2000) [2] Badalassi, V.E., Ceniceros, H.D., Banerjee, S.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 371-397 (2003) [3] Bai, Z.-Z.: Structured preconditioners for nonsingular matrices of block two-by-two structures. Math. Comput. 75, 791-815 (2006) [4] Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93-111 (2010) [5] Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33, 343-369 (2013) [6] Bai, Z.-Z., Li, G.-Q.: Restrictively preconditioned conjugate gradient methods for systems of linear equations. IMA J. Numer. Anal. 23, 561-580 (2003) [7] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [8] Bai, Z.-Z., Wang, Z.-Q.: Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems. J. Comput. Appl. Math. 187, 202-226 (2006) [9] Bai, Z.-Z., Yin, J.-F., Su, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24, 40-46 (2006) [10] Benzi, M., Bertaccini, D.: Block preconditioning of real-valued iterative algorithms for complex linear systems. IMA J. Numer. Anal. 28, 598-618 (2008) [11] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1-137 (2005) [12] Bertaccini, D.: Efficient solvers for sequences of complex symmetric linear systems. Electron. Trans. Numer. Anal. 18, 49-64 (2004) [13] Berti, A., Bochicchio, I.: A mathematical model for phase separation: a generalized Cahn-Hilliard equation. Math. Methods Appl. Sci. 34, 1193-1201 (2011) [14] Cao, Y., Li, S.: Block triangular preconditioners based on symmetric-triangular decomposition for generalized saddle point problems. Appl. Math. Comput. 358, 262-277 (2019) [15] Chen, C.-R., Ma, C.-F.: A generalized shift-splitting preconditioner for complex symmetric linear systems. J. Comput. Appl. Math. 344, 691-700 (2018) [16] Day, D.D., Heroux, M.A.: Solving complex-valued linear systems via equivalent real formulations. SIAM J. Sci. Comput. 23, 480-498 (2001) [17] Edalatpour, V., Hezari, D., Salkuyeh, D.K.: Accelerated generalized SOR method for a class of complex systems of linear equations. Math. Commun. 20, 37-52 (2015) [18] Freund, R.W.: Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Stat. Comput. 13, 425-448 (1992) [19] Golub, G.H., Yuan, J.-Y.: Symmetric-triangular decomposition and its applications. Part I: theorems and algorithms. BIT Numer. Math. 42, 814-822 (2002) [20] Hezari, D., Edalatpour, V., Salkuyeh, D.K.: Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations. Numer. Linear Algebra Appl. 22, 761-776 (2015) [21] Lass, O., Vallejos, M., Borzì, A., Douglas, C.C.: Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems. Computing 84, 27-48 (2009) [22] Li, X.-A., Zhang, W.-H., Wu, Y.-J.: On symmetric block triangular splitting iteration method for a class of complex symmetric system of linear equations. Appl. Math. Lett. 79, 131-137 (2018) [23] Liang, Z.-Z., Zhang, G.-F.: On SSOR iteration method for a class of block two-by-two linear systems. Numer. Algorithms 71, 1-17 (2016) [24] Peng, X.-F., Li, W.: On the restrictively preconditioned conjugate gradient method for solving saddle point problems. Int. J. Comput. Math. 93, 142-159 (2016) [25] Rees, T., Dollar, H.S., Wathen, A.J.: Optimal solvers for PDE-constrained optimization. SIAM J. Sci. Comput. 32, 271-298 (2010) [26] Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856-869 (1986) [27] Salkuyeh, D.K., Hezari, D., Edalatpour, V.: Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations. Int. J. Comput. Math. 92, 802-815 (2015) [28] Yan, T.-X., Ma, C.-F.: A modified generalized shift-splitting iteration method for complex symmetric linear systems. Appl. Math. Lett. 117, 107129 (2021) [29] Zhang, J.-H., Wang, Z.-W., Zhao, J.: Preconditioned symmetric block triangular splitting iteration method for a class of complex symmetric linear systems. Appl. Math. Lett. 86, 95-102 (2018) [30] Zhao, P.-P., Huang, Y.-M.: A restrictive preconditioner for the system arising in half-quadratic regularized image restoration. Appl. Math. Lett. 115, 106916 (2021) [31] Zheng, Z., Zeng, M.-L., Zhang, G.-F.: A variant of PMHSS iteration method for a class of complex symmetric indefinite linear systems. Numer. Algorithms 91, 283-300 (2022) |