[1] Bai, Z.-Z.: Parallel multisplitting two-stage iterative methods for large sparse systems of weakly nonlinear equations. Numer. Algorithms 15(3/4), 347-372 (1997) [2] Bai, Z.-Z.: A class of two-stage iterative methods for systems of weakly nonlinear equations. Numer. Algorithms 14, 295-319 (1997) [3] Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917-933 (2010) [4] Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93-111 (2010) [5] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603-626 (2003) [6] Bai, Z.-Z., Migallón, V., Penadés, J., Szyld, D.B.: Block and asynchronous two-stage methods for mildly nonlinear systems. Numer. Math. 82, 1-20 (1999) [7] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [8] Bai, Z.-Z., Yang, X.: On HSS-based iteration methods for weakly nonlinear systems. Appl. Numer. Math. 59, 2923-2936 (2009) [9] Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425-439 (2013) [10] Caccetta, L., Qu, B., Zhou, G.-L.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48, 45-58 (2011) [11] Cao, Y., Shi, Q., Zhu, S.-L.: A relaxed generalized Newton iteration method for generalized absolute value equations. AIMS Math. 6, 1258-1275 (2021) [12] Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. SIAM, Philadelphia (2009) [13] Dehghan, M., Shirilord, A.: Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation. Appl. Numer. Math. 158, 425-438 (2020) [14] Gutknecht, M.H., Rozložník, M.: Residual smoothing techniques: do they improve the limiting accuracy of iterative solvers? BIT Numer. Math. 41, 86-114 (2001) [15] Haghani, F.K.: On generalized Traub’s method for absolute value equations. J. Optim. Theory Appl. 166, 619-625 (2015) [16] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012) [17] Ke, Y.-F.: The new iteration algorithm for absolute value equation. Appl. Math. Lett. 99, 105990 (2020) [18] Ke, Y.-F., Ma, C.-F.: SOR-like iteration method for solving absolute value equations. Appl. Math. Comput. 311, 195-202 (2017) [19] Ketabchi, S., Moosaei, H.: An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side. Comput. Math. Appl. 64, 1882-1885 (2012) [20] Li, C.-X.: A modified generalized Newton method for absolute value equations. J. Optim. Theory Appl. 170, 1055-1059 (2016) [21] Li, C.-X., Wu, S.-L.: Block-diagonal and anti-block-diagonal splitting iteration method for absolute value equation. In: Song, H., Jiang, D. (eds.) Simulation Tools and Techniques, vol. 369, pp. 572-581. Springer, Cham (2021) [22] Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36, 43-53 (2007) [23] Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3, 101-108 (2009) [24] Mangasarian, O.L.: A hybrid algorithm for solving the absolute value equation. Optim. Lett. 9, 1469-1474 (2015) [25] Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419, 359-367 (2006) [26] Miao, S.-X., Xiong, X.-T., Wen, J.: On Picard-SHSS iteration method for absolute value equation. AIMS Math. 6, 1743-1753 (2021) [27] Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia (2000) [28] Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44, 363-372 (2009) [29] Rohn, J.: A theorem of the alternatives for the equation \begin{document}$ Ax+B|x|=b $\end{document}. Linear Multilinear Algebra 52, 421-426 (2004) [30] Rohn, J.: An algorithm for solving the absolute value equations. Electron. J. Linear Algebra 18, 589-599 (2009) [31] Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8, 35-44 (2014) [32] Salkuyeh, D.K.: The Picard-HSS iteration method for absolute value equations. Optim. Lett. 8, 2191-2202 (2014) [33] Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000) [34] Walker, H.F.: Residual smoothing and peak/plateau behavior in Krylov subspace methods. Appl. Numer. Math. 19, 279-286 (1995) [35] Wu, S.-L., Guo, P.: Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl. Numer. Math. 132, 127-137 (2018) [36] Yang, A.-L., Wu, Y.-J., Cao, Y.: Minimum residual Hermitian and skew-Hermitian splitting iteration method for non-Hermitian positive definite linear systems. BIT Numer. Math. 59, 299-319 (2019) [37] Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971) [38] Yu, D.-M., Chen, C.-R., Han, D.-R.: A modified fixed point iteration method for solving the system of absolute value equations. Optimization 71, 449-461 (2022) [39] Zhang, J.-L., Zhang, G.-F., Liang, Z.-Z.: A modified generalized SOR-like method for solving an absolute value equation. Linear Multilinear Algebra 71, 1578-1595 (2023) |