[1] Abou-Kandil, H., Freiling, G., Jank, G.: On the solution of discrete-time Markovian jump linear quadratic control problems. Automatica 31(5), 765-768 (1995) [2] Bai, Z.-Z.: A two-step matrix splitting iteration paradigm based on one single splitting for solving systems of linear equations. Numer. Linear Algebra Appl. 31, 2510 (2023). https://doi.org/10.1002/nla.2510 [3] Bai, Z.-Z., Guo, X.-X., Xu, S.-F.: Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations. Numer. Linear Algebra Appl. 13(8), 655-674 (2006) [4] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. Society for Industrial and Applied Mathematics, Philadelphia (2021) [5] Berman, A., Plemmons, R.-J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979) [6] Chen, F., Ren, B.-C.: On preconditioning of double saddle point linear systems arising from liquid crystal director modeling. Appl. Math. Lett. 136, 108445 (2023) [7] Dong, N., Jin, J., Yu, B.: Convergence rates of a class of predictor-corrector iterations for the nonsymmetric algebraic Riccati equation arising in transport theory. Adv. Appl. Math. Mech. 9(4), 944-963 (2017) [8] Fan, H.-Y., Chu, E.-K.: Projected nonsymmetric algebraic Riccati equations and refining estimates of invariant and deflating subspaces. J. Comput. Appl. Math. 315, 70-86 (2017) [9] Gao, Y.-H., Bai, Z.-Z.: On inexact Newton methods based on doubling iteration scheme for non -symmetric algebraic Riccati equations. Numer. Linear Algebra Appl. 18(3), 325-341 (2011) [10] Guan, J.: Modified alternately linearized implicit iteration method for \begin{document}$ M $\end{document}-matrix algebraic Riccati equations. Appl. Math. Comput. 347, 442-448 (2019) [11] Guan, J., Lu, L.: New alternately linearized implicit iteration for \begin{document}$ M $\end{document}-matrix algebraic Riccati equations. J. Math. Study 50(1), 54-64 (2017) [12] Guo, C.-H.: Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for \begin{document}$ M $\end{document}-matrices. SIAM J. Matrix Anal. Appl. 23(1), 225-242 (2001) [13] Guo, C.-H., Laub, A.-J.: On the iterative solution of a class of nonsymmetric algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 22(2), 376-391 (2000) [14] Guo, X.-X., Lin, W.-W., Xu, S.-F.: A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. Numer. Math. 103(3), 393-412 (2006) [15] Juang, J., Lin, W.-W.: Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices. SIAM J. Matrix Anal. Appl. 20(1), 228-243 (1998) [16] Liang, X., Xu, J., Zhang, H.: Solution to stochastic LQ control problem for Itô systems with state delay or input delay. Syst. Control Lett. 113, 86-92 (2018) [17] Liu, J., Wang, L.: New solution bounds of the continuous algebraic Riccati equation and their applications in redundant control input systems. Sci. China Inf. Sci. 62, 1-17 (2019) [18] Liu, J., Wang, L., Bai, Y.: New estimates of upper bounds for the solutions of the continuous algebraic Riccati equation and the redundant control inputs problems. Automatica 116, 108936 (2020) [19] Liu, J., Zhang, J., Luo, F.: Newton method for the positive solution of the coupled algebraic Riccati equation applied to automatic control. Comput. Appl. Math. 39(2), 1-17 (2020) [20] Lu, H., Ma, C.: A new linearized implicit iteration method for nonsymmetric algebraic Riccati equation. J. Appl. Math. Comput. 50(1/2), 227-241 (2016) [21] Luo, F.-F.: The Continuous Non-symmetric Coupled Riccati Equations. Xiangtan University, Hunan (2011) (in Chinese) [22] Miyajima, S.: Fast verified computation for the minimal nonnegative solution of the nonsymmetric algebraic Riccati equation. Comput. Appl. Math. 37(4), 4599-4610 (2018) [23] Ortega, J.-M., Rheinboldt, W.-C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) [24] Wang, L.: Numerical algorithms of the discrete coupled algebraic Riccati equation arising in optimal control systems. Math. Probl. Eng. 2020, 1-8 (2020) [25] Wang, L.: Refined upper solution bound of the continuous coupled algebraic Riccati equation. Complexity 2020, 1-12 (2020) [26] Wang, L.: An improved iterative method for solving the discrete algebraic Riccati equation. Math. Probl. Eng. 2020, 1-6 (2020) [27] Wang, L., Liu, J.: Upper solution bound of the CCARE and its application in multi-agent systems with time-delay in the state. Int. J. Control 96, 1754-1764 (2022) [28] Wu, A.-G., Sun, H.-J., Zhang, Y.: A novel iterative algorithm for solving coupled Riccati equations. Appl. Math. Comput. 364, 124645 (2020) [29] Zhang, J., Kang, H., Tan, F.: Two-parameters numerical methods of the non-symmetric algebraic Riccati equation. J. Comput. Appl. Math. 378, 112933 (2020) [30] Zhang, J., Tan, F.: Numerical methods for the minimal nonnegative solution of the nonsymmetric coupled algebraic Riccati equation. Asian J. Control 23(1), 374-386 (2021) |