Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5): 1977-1992.doi: 10.1007/s42967-024-00421-x
• ORIGINAL PAPERS • Previous Articles
Ke-Yu Gao, Chen-Liang Li
Received:2023-09-01
Revised:2024-04-25
Accepted:2024-04-28
Online:2024-11-14
Published:2024-11-14
Contact:
Chen-Liang Li,E-mail:chenli@guet.edu.cn
E-mail:chenli@guet.edu.cn
Supported by:Ke-Yu Gao, Chen-Liang Li. Modulus-Based Cascadic Multigrid Method for Quasi-variational Inequality Problems[J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1977-1992.
| [1] Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17(6), 917-933 (2010). https://doi.org/10.1016/j.matcom.2021.12.007 [2] Bai, Z.-Z., Evans, D.J.: Matrix multisplitting relaxation methods for linear complementarity problems. Int. J. Comput. Math. 63, 309-326 (1997). https://doi.org/10.1080/00207169708804569 [3] Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62(1), 59-77 (2013). https://doi.org/10.1007/s11075-012-9566-x [4] Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20(3), 425-439 (2013). https://doi.org/10.1002/nla.1835 [5] Bai, Z.-Z., Zhang, L.-L.: Modulus-based multigrid methods for linear complementarity problems. Numer. Linear Algebra Appl. 24(6), e2105 (2017). https://doi.org/10.1002/nla.2105 [6] Blum, H., Braess, D., Suttmeier, F.: A cascadic multigrid algorithm for variational inequalities. Comput. Vis. Sci. 7(3/4), 153-157 (2004). https://doi.org/10.1007/s00791-004-0134-3 [7] Bornemann, F.A., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Numer. Math. 75(2), 135-152 (1996). https://doi.org/10.1007/s002110050234 [8] Bornemann, F.A., Krause, R.: Classical and cascades multigrid-methodogical comparison. In: Bjorstad, P., Esped-AI, M., Keys, D. (eds.) Proceedings of the 9th International Conference on Domain Decomposition. Wiley and Sons, Hoboken (1998) [9] Brandt, A., Cryer, C.: Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems. SIAM J. Sci. Stat. Comput. 4(4), 655-684 (2006). https://doi.org/10.1137/0904046 [10] Chen, C.-M., Hu, H.-L., Xie, Z.-Q., Li, C.-L.: Analysis of extrapolation cascadic multigrid method (EXCMG). Sci. China 51(8), 1349-1360 (2008). https://doi.org/10.1007/s11425-008-0119-7 [11] Chen, C.-M., Hu, H.-L., Xie, Z.-Q., Li, C.-L.: [12] Chen, C.-M., Xie, Z.-Q., Li, C.-L., Hu, H.-L.: Study of a new extrapolation multigrid method. J. Nat. Sci. Hunan Norm. Univer. 30(2), 1-5 (2007) [13] Chen, J.-L., Chen, X.-H.: Special Matrix. Tsinghua University Press, Beijing (2001) [14] Cottle, R., Pang, J.-S., Stone, R.: The Linear Complementarity Problem. Society for Industrial and Applied Mathematics, Philadelphia (2009) [15] Ferris, M., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669 (1997). https://doi.org/10.1137/S0036144595285963 [16] Glowinsk, R., Lions, J., Tremolieers, R.: Numerieal Analysis of Variational Inequalities. Elsevier Science, Amsterdam (2011) [17] Hong, J.-T., Li, C.-L.: Modulus-based matrix splitting iteration methods for a class of implicit complementarity problems. Numer. Linear Algebra Appl. 23(4), 629-641 (2016). https://doi.org/10.1002/nla.2044 [18] Li, C.-L.: Some new methods for variational inequalities and complementarity problems. PhD Thesis, Hunan University, Changsha (2004) [19] Li, C.-L., Hong, J.-T.: Modulus-based synchronous multisplitting iteration methods for an implicit complementarity problem. East Asian J. Appl. Math. 7(2), 363-375 (2017). https://doi.org/10.4208/eajam.261215.220217a [20] Ma, J.: Multigrid method for the second order elliptic variational inequalities. Master’s Thesis, Hunan University, Changsha (2001) [21] Mandel, J.: A multilevel iterative method for symmetric, positive definite linear complementarity problems. Appl. Math. Optim. 11(1), 77-95 (1984). https://doi.org/10.1007/BF01442171 [22] Noor, M.: Linear quasi-complementarity problem. Utilitas Math. 27(5), 249-260 (1985) [23] Noor, M.: The quasi-complementarity problem. J. Math. Anal. Appl. 130(2), 344-353 (1988). https://doi.org/10.1016/0022-247X(88)90310-1 [24] Noor, M.: Fixed point approach for complementarity problems. J. Math. Anal. Appl. 133(2), 437-448 (1988). https://doi.org/10.1016/0022-247X(88)90413-1 [25] Pang, J.-S.: The Implicit Complementarity Problem. Academic Press, San Diego (1981). https://doi.org/10.1016/B978-0-12-468662-5.50022-7 [26] Shi, Z.-C., Xu, X.-J.: Cascadic multigrid method for elliptic problems. East West J. Numer. Math. 7(3), 199-209 (1999) [27] Shi, Z.-C., Xu, X.-J.: A new cascadic multigrid. Sci. China Ser. A-Math. 44(1), 21-30 (2001). https://doi.org/10.1007/BF02872279 [28] Shi, Z.-C., Xu, X.-J., Huang, Y.-Q.: Economical cascadic multigrid method (ECMG). Sci. China Ser. A-Math. 50(12), 1765-1780 (2007). https://doi.org/10.1007/s11425-007-0127-z [29] Sun, Li., Huang, Y.-M.: A modulus-based multigrid method for image retinex. Appl. Numer. Math. 164, 199-210 (2021). https://doi.org/10.1016/j.apnum.2020.11.011 [30] Wang, L.-H., Xu, X.-J.: Mathematical Foundation of Finite Element Method. Science Press, Beijing (2004) [31] Wang, Y., Li, C.-L.: A modulus-based cascadic multigrid method for linear complementarity problem. J. Guilin Univ. Electron. Technol. 2, 151-153 (2016) [32] Wang, Y., Li, C.-L.: A modulus-based cascadic multigrid method for elliptic variational inequality problems. Numer. Algorithms 90(4), 1777-1791 (2022). https://doi.org/10.1007/s11075-021-01251-1 [33] Wang, Y., Yin, J.-F., Dou, Q.-Y., Li, R.: Two-step modulus-based matrix splitting iteration methods for a class of implicit complementarity problems. Numer. Math. 12(3), 867-883 (2019). https://doi.org/10.4208/nmtma.OA-2018-0034 [34] Yuan, Q.: Implicit complementarity problem. Master’s Thesis. Nanjing University of Aeronautics and Astronautics, Nanjing (2002) [35] Yuan, Q., Yin, H.-Y.: Minimization deformation of implicit complementarity problem and its stability point. J. Comput. Math. 31, 11-18 (2009) [36] Zeng, J.-P., Ma, J.-T.: A cascadic multigrid method for a kind of one-dimensional elliptic variational inequality. J. Hunan Univer. (Nat. Sci.) 5, 1-5 (2001) [37] Zhan, W.-P., Zhou, S.-Z.: Iterative method for a class of quasi-complementary problems. Acta Math. Appl. 23(4), 551-556 (2000) [38] Zhang, L.-L.: A modulus-based multigrid method for nonlinear complementarity problems with application to free boundary problems with nonlinear source terms. Appl. Math. Comput. 399, 126015 (2021). https://doi.org/10.1016/j.amc.2021.126015 [39] Zhang, L.-L.: On AMSOR smoother in modulus-based multigrid method for linear complementarity problems. Acta Math. Appl. Sin. 44(1), 93-104 (2021). https://doi.org/10.1119/1.2343694 [40] Zhang, L.-L., Ren, Z.-R.: A modified modulus-based multigrid method for linear complementarity problems arising from free boundary problems. Appl. Numer. Math. 164, 89-100 (2021). https://doi.org/10.1016/j.apnum.2020.09.008 [41] Zhao, J., Vollebregt, E., Oosterlee, C.: A full multigrid method for linear complementarity problems arising from elastic normal contact problems. Math. Model. Anal. 19(2), 216-240 (2014). https://doi.org/10.3846/13926292.2014.909899 [42] Zheng, N., Yin, J.-F.: Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an [43] Zhou, S.-Z., Zhan, W.-P.: Solutions of a class of Bellman equation discrete problems. Syst. Sci. Math. 22(4), 385-391 (2002) |
| [1] | Qin-Qin Shen, Geng-Chen Yang, Chen-Can Zhou. Convergence Analysis of the Projected SOR Iteration Method for Horizontal Linear Complementarity Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1617-1638. |
| [2] | Xu Li, Jian-Sheng Feng. Parameterized QHSS Iteration Method and Its Variants for Non-Hermitian Positive Definite Linear Systems of Strong Skew-Hermitian Parts [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1665-1683. |
| [3] | Jin-Feng Mao, Fang Chen. On Multi-step Partially Randomized Extended Kaczmarz Method for Solving Large Sparse Inconsistent Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1724-1743. |
| [4] | Lu-Xin Wang, Yang Cao, Qin-Qin Shen. Two Variants of Robust Two-Step Modulus-Based Matrix Splitting Iteration Methods for Mixed-Cell-Height Circuit Legalization Problem [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1769-1790. |
| [5] | Yan-Xia Dai, Ren-Yi Yan, Ai-Li Yang. Minimum Residual BAS Iteration Method for Solving the System of Absolute Value Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1815-1825. |
| [6] | Rong Ma, Yu-Jiang Wu, Lun-Ji Song. Modified Newton-PAGSOR Method for Solving Nonlinear Systems with Complex Symmetric Jacobian Matrices [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1880-1906. |
| [7] | Li Wang, Yi Xiao, Yu-Li Zhu, Yi-Bo Wang. Modified Alternately Linearized Implicit Iteration Methods for Nonsymmetric Coupled Algebraic Riccati Equation [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1923-1939. |
| [8] | Chao Sun, Xiao-Xia Guo. A Novel Greedy Block Gauss-Seidel Method for Solving Large Linear Least-Squares Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1959-1976. |
| [9] | Zhao-Zheng Liang, Jun-Lin Tian, Hong-Yi Wan. A Note on Chebyshev Accelerated PMHSS Iteration Method for Block Two-by-Two Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1242-1263. |
| [10] | Huaijun Yang. Unconditionally Superconvergence Error Analysis of an Energy-Stable and Linearized Galerkin Finite Element Method for Nonlinear Wave Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1264-1281. |
| [11] | Lu-Xin Wang, Qin-Qin Shen, Yang Cao. Modulus-Based Matrix Splitting Iteration Method for Horizontal Quasi-complementarity Problem [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1308-1332. |
| [12] | Xing Liu. An Accelerated Convergence Scheme for Solving Stochastic Fractional Diffusion Equation [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1444-1461. |
| [13] | Jing Chen, Qi Wang. Numerical Stability and Convergence for Delay Space-Fractional Fisher Equations with Mixed Boundary Conditions in Two Dimensions [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1462-1488. |
| [14] | Xuan Zhao, Zhongqin Xue. Efficient Variable Steps BDF2 Scheme for the Two-Dimensional Space Fractional Cahn-Hilliard Model [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1489-1515. |
| [15] | Long-Ze Tan, Ming-Yu Deng, Xue-Ping Guo. On Multi-step Greedy Kaczmarz Method for Solving Large Sparse Consistent Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1580-1597. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||