[1] Axelsson, O.: A generalized SSOR method. BIT 12(4), 443-467 (1972) [2] Axelsson, O., Barker, V.A.: Finite Element Solution of Boundary Value Problems: Theory and Computation. Academic Press, Orlando (1984) [3] Bai, Z.-Z.: A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations. Adv. Comput. Math. 10(2), 169-186 (1999) [4] Bai, Z.-Z.: Modified block SSOR preconditioners for symmetric positive definite linear systems. Ann. Oper. Res. 103, 263-282 (2001) [5] Bai, Z.-Z.: On SSOR-like preconditioners for non-Hermitian positive definite matrices. Numer. Linear Algebra Appl. 23(1), 37-60 (2016) [6] Bai, Z.-Z.: Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations. Numer. Linear Algebra Appl. 25(5), e2157 (2018) [7] Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87(3/4), 93-111 (2010) [8] Bai, Z.-Z., Golub, G.H., Li, C.-K.: Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comput. 76(257), 287-298 (2007) [9] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603-626 (2003) [10] Bai, Z.-Z., Golub, G.H., Ng, M.K.: On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14(4), 319-335 (2007) [11] Bai, Z.-Z., Ng, M.K.: Preconditioners for nonsymmetric block Toeplitz-like-plus-diagonal linear systems. Numer. Math. 96(2), 197-220 (2003) [12] Botchev, M.A., Golub, G.H.: A class of nonsymmetric preconditioners for saddle point problems. SIAM J. Matrix Anal. Appl. 27(4), 1125-1149 (2006) [13] Botchev, M.A., Krukier, L.A.: Iterative solution of strongly nonsymmetric systems of linear algebraic equations. Russian Comput. Math. Math. Phys. 37, 1241-1251 (1997) [14] Chen, X., Toh, K.C., Phoon, K.K.: A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations. Int. J. Numer. Meth. Eng. 65(6), 785-807 (2006) [15] Delong, M.A., Ortega, J.M.: SOR as a preconditioner. Appl. Numer. Math. 18(4), 431-440 (1995) [16] Eisenstat, S.C.: Efficient implementation of a class of preconditioned conjugate gradient methods. SIAM J. Sci. Stat. Comput. 2(1), 1-4 (1981) [17] Hadjidimos, A., Yeyios, A.K.: Some notes on multisplitting methods and \begin{document}$ m $\end{document}-step SSOR preconditioners for linear systems. Linear Algebra Appl. 248, 277-301 (1996) [18] Harrar, D.L., II., Ortega, J.M.: Optimum \begin{document}$ m $\end{document}-step SSOR preconditioning. Comput. Appl. Math. 24, 195-198 (1988) [19] Krukier, L.A., Chikina, L.G., Belokon, T.V.: Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations. Appl. Numer. Math. 41, 89-105 (2002) [20] Krukier, L.A., Krukier, B.L., Ren, Z.-R.: Generalized skew-Hermitian triangular splitting iteration methods for saddle-point linear systems. Numer. Linear Algebra Appl. 21, 152-170 (2014) [21] Kumagai, M., Kakita, S., Okamoto, Y.: Performance of Krylov subspace method with SOR preconditioner supported by Eisenstat’s technique for linear system derived from time-periodic FEM. COMPEL 38(5), 1641-1654 (2019) [22] Meng, Z.-H., Li, F.-T., Xu, X.-C., Huang, D.-N., Zhang, D.-L.: Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm. Explor. Geophys. 48(3), 294-304 (2017) [23] Peng, X.-F., Xiang, S.-H., Li, W.: The test algorithm and the quasi-optimum factor of SSORPCG. Numer. Math. J. of Chin. Univ. 29(2), 176-185 (2007) [24] Saad, Y.: Highly parallel preconditioners for general sparse matrices. In: Golub, G.H., Luskin, R.M., Greenbaum, A. (eds.) Recent Advances in Iterative Methods, pp. 165-199. Springer, New York (1994) [25] Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia (2003) [26] Song, S.-Z., Huang, Z.-D.: A modified SSOR-like preconditioner for non-Hermitian positive definite matrices. Appl. Numer. Math. 164, 175-189 (2021) [27] Stotland, S.A., Ortega, J.M.: Orderings for parallel conjugate gradient preconditioners. SIAM J. Sci. Comput. 18(3), 854-868 (1997) [28] Tan, X.-Y.: Shifted SSOR-like preconditioner for non-Hermitian positive definite matrices. Numer. Algorithms 75(1), 245-260 (2017) [29] Wang, L., Bai, Z.-Z.: Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts. BIT 44, 363-386 (2004) [30] Yamada, S., Ohsaki, I., Ikeuchi, M., Niki, H.: Non-adaptive and adaptive SAOR-CG algorithms. J. Comput. Appl. Math. 12/13, 635-650 (1985) [31] Zhang, J.-L.: On SSOR-like preconditioner for saddle point problems with dominant skew-Hermitian part. Int. J. Comput. Math. 96(4), 782-796 (2019) [32] Zhang, J.-L.: Inexact block SSOR-like preconditioners for non-Hermitian positive definite linear systems of strong Hermitian parts. Appl. Numer. Math. 165, 598-613 (2021) |