[1] Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994) [2] Axelsson, O., Kolotilina, L.: Montonicity and discretization error estimates. SIAM J. Numer. Anal. 27, 1591-1611 (1990) [3] Axelsson, O., Kolotilina, L.: Diagonally compensated reduction and related preconditioning methods. Numer. Linear Algebra Appl. 1(2), 155-177 (1994) [4] Bai, J., Feng, X.-C.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Proc. 16, 2492-2502 (2007) [5] Bai, Z.-Z.: Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems. Appl. Math. Comput. 109, 273-285 (2000) [6] Bai, Z.-Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl. Math. 283, 71-78 (2015) [7] Bai, Z.-Z., Duff, I.S., Wathen, A.J.: A class of incomplete orthogonal factorization methods. I: methods and theories. BIT Numer. Math. 41, 53-70 (2001) [8] Bai, Z.-Z., Lu, K.-Y.: On banded M-splitting iteration methods for solving discretized spatial fractional diffusion equations. BIT Numer. Math. 59, 1-33 (2019) [9] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [10] Bai, Z.-Z., Yin, J.-F.: Modified incomplete orthogonal factorization methods using Givens rotations. Computing 86, 53-69 (2009) [11] Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403-1412 (2000) [12] Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413-1423 (2000) [13] Diaz, G., Coimbra, C.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56(2), 145-157 (2009) [14] Du, R., Alikhanov, A.A., Sun, Z.-Z.: Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations. Comput. Math. Appl. 79, 2952-2972 (2020) [15] Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 69, 119-133 (2019) [16] Horn, R.A., Johnson, C.R.: Toptics in Matrix Analysis. Academic Press, Cambridge (1994) [17] Ingman, D., Suzdalnitsky, J.: Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. 131, 763-767 (2005) [18] Kobelev, Y., Kobelev, L., Klimontovich, Y.: Statistical physics of dynamic systems with variable memory. Dokl. Phys. 48, 285-289 (2003) [19] Kumar, P., Chaudhary, S.: Analysis of fractional order control system with performance and stability. Int. J. Eng. Sci. Technol. 9, 408-416 (2017) [20] Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715-725 (2013) [21] Lin, F.-R., Wang, Q.-Y., Jin, X.-Q.: Crank-Nicolson-weighted-shifted-Grünwald difference schemes for space Riesz variable-order fractional diffusion equations. Numer. Algorithms 87, 601-631 (2021) [22] Lin, F.-R., Yang, S.-W., Jin, X.-Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109-117 (2014) [23] Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435-445 (2009) [24] Lorenzo, C.F., Hartley, T.T.: Variable-order and distributed order fractional operators. Nonlinear Dyn. 29, 57-98 (2002) [25] Lu, X., Fang, Z.-W., Sun, H.-W.: Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations. J. Appl. Math. Comput. 66, 673-700 (2020) [26] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) [27] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) [28] Pan, J.-Y., Ke, R.-H., Ng, M.K., Sun, H.-W.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, 2698-2719 (2014) [29] Pang, H.-K., Sun, H.-W.: A fast algorithm for the variable-order spatial fractional advection-diffusion equation. J. Sci. Comput. 87, 15 (2021) [30] Podlubny, I.: Fractional Differential Equations. Cambridge University Press, New York (1999) [31] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integerals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993) [32] Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transf. Spec. Funct. 1, 277-300 (1993) [33] Wang, H., Wang, K.-X., Sircar, T.: A direct \begin{document}$ {O}({N}\log ^{2}{N}) $\end{document} finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095-8104 (2010) [34] Wang, Q.-Y., She, Z.-H., Lao, C.-X., Lin, F.-R.: Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations. Numer. Algorithms 95, 859-895 (2024). https://doi.org/10.1007/s11075-023-01592-z [35] Zhao, X., Sun, Z.-Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184-200 (2015) [36] Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760-1781 (2009) |