[1] Al-Mohy, A.H.: Algorithms for the matrix exponential and its Fréchet derivative. PhD Thesis, University of Manchester, UK (2010) [2] Anderson, W.N., Morley, T.D., Trapp, G.E.: Positive solutions to \begin{document}$ X=A-BX^{-1}B^{*} $\end{document}. Linear Algebra Appl. 134, 53–62 (1990). https://doi.org/10.1016/0024-3795(90)90005-W [3] Bean, N.G., Bright, L., Latouche, G., Pearce, P.K., Pollett, Taylor, P.G.: The quasi-stationary behaviour of quasi-birth-death processes. Ann. Appl. Prob. 7(1), 134–155 (1997) [4] Chacha, C.S., Kim, H.-M.: Elementwise minimal nonnegative solutions for a class of nonlinear matrix equations. East Asian J. Appl. Math. 9, 665–682 (2019). https://doi.org/10.4208/eajam.300518.120119 [5] Chacha, C.S., Naqvi, S.M.R.S.: Condition numbers of the nonlinear matrix equation \begin{document}$ X^{p}-A^{*}e^{X}A=I $\end{document}. J. Funct. Spaces 2018, 1–8 (2018). https://doi.org/10.1155/2018/3291867 [6] Cucker, F., Diao, H., Wei, Y.: On mixed and componentwise condition numbers from Moore-Penrose inverse and linear least squares problems. Math. Comput. 76, 947–963 (2007) [7] Diao, H.-A.: On condition numbers for least squares with quadric inequality constraint. Comput. Math. Appl. 73(4), 616–627 (2017). https://doi.org/10.1016/j.camwa.2016.12.033 [8] Elmikkawy, M., Atlan, F.: Remarks on two symmetric polynomials and some matrices. Appl. Math. Comput. 219(16), 8770–8778 (2013) [9] Engwerda, J.C., Ran, A.C.M., Rijkeboer, A.L.: Necessary and sufficient conditions for the existence of a positive definite solutions of the matrix equation \begin{document}$ X+A^{*}X^{-1}A=Q $\end{document}. Linear Algebra Appl. 186, 255–275 (1993). https://doi.org/10.1016/0024-3795(93)90295-Y [10] Gao, D.: On Hermitian positive definite solutions of the nonlinear matrix equation \begin{document}$ {X-A^{*}e^{X}A = I} $\end{document}. J. Appl. Math. Comput. 50, 109–116 (2016). https://doi.org/10.1007/s12190-014-0861-7 [11] Gohberg, I., Koltracht, I.: Mixed, componentwise, and structured condition numbers. SIAM. J. Matrix Anal. Appl. 14(3), 688–704 (1993). https://doi.org/10.1137/0614049 [12] Guo, G.H., Lancaster, P.: Iterative solution of two matrix equations. Math. Comput. 68(228), 1589–1603 (1999) [13] Guo, X.-X., Wu, H.-X.: Two structure-preserving-doubling like algorithms to solve the positive definite solution of the equation \begin{document}$ X-A^{H}\overline{X}^{-1}A=Q $\end{document}. Commun. Appl. Math. Comput. 3, 123–135 (2021). https://doi.org/10.1007/s42967-020-00062-w [14] Han, Y.-H., Kim, H.-M.: Newton’s method for symmetric and bisymmetric solvents of nonlinear matrix equations. J. Korean Math. Soc. 50(4), 755–770 (2013). https://doi.org/10.4134/JKMS.2013.50.4.755 [15] Higham, N., Al-Mohy, A.H.: Computing the Fréchet derivative of the matrix exponential, with an application to condition number estimation. SIAM J. Matrix Anal. Appl. 30, 1639–1657 (2009) [16] Higham, N.J., Kim, H.-M.: Solving a quadratic matrix equation by Newton’s method with exact line searches. SIAM J. Matrix Anal. Appl. 23, 303–316 (2001) [17] Ivanov, I.G., Hasanov, V.I., Uhlig, F.: Improved methods and starting values to solve the matrix equations \begin{document}$ X \pm A^{*}X^{-1}A=I $\end{document} iteratively. Math. Comput. 74(249), 263–278 (2005) [18] Jarre, F., Toint, P.L.: Simple examples for the failure of Newton’s method with line search for strictly convex minimization. Math. Program. 158, 23–34 (2016). https://doi.org/10.1007/s10107-015-0913-2 [19] Jia, Z., Zhao, M., Wang, M., Ling, S.: Solvability theory and iteration method for one self-adjoint polynomial matrix equation. J. Appl. Math. ID 681605 (2014). https://doi.org/10.1155/2014/681605 [20] Jia, Z.-G., Zhao, M.-X.: A structured condition number for self-adjoint polynomial matrix equations with applications in linear control. J. Comput. Appl. Math. 331, 208–216 (2018). https://doi.org/10.1016/j.cam.2017.09.046 [21] Liu, L.: Mixed and componentwise condition numbers of nonsymmetric algebraic Riccati equation. Appl. Math. Comput. 218, 7595–7601 (2012). https://doi.org/10.1016/j.amc.2012.01.026 [22] Liu, L.-D., Lu, X.: Two kinds of condition numbers for the quadratic matrix equation. Appl. Math. Comput. 219(16), 8759–8769 (2013) [23] Long, J.-H., Hu, X.-Y., Zhang, L.: Improved Newton’s method with exact line searches to solve quadratic matrix equation. J. Comput. Appl. Math. 222, 645–654 (2008). https://doi.org/10.1016/j.cam.2007.12.018 [24] Mascarenhas, W.F.: The BFGS method with exact line searches fails for non-convex objective functions. Math. Program. Ser. A 99, 49–61 (2004) [25] Mathias, R.: Evaluating the Fréchet derivative of the matrix exponential. Numer. Math. 63(1), 213–226 (1992). https://doi.org/10.1007/BF01385857 [26] Phillips, G.M., Taylor, P.J.: Theory and Applications of Numerical Analysis. 2nd edn. Academic Press, London (1996) [27] Ran, A.C.M., Reurings, M.C.B.: On the nonlinear matrix equation \begin{document}$ X+A^{*}\mathscr {F}(X)A=Q $\end{document}?: solutions and perturbation theory. Linear Algebra Appl. 346, 15–26 (2002). https://doi.org/10.1016/S0024-3795(01)00508-0 [28] Relton, S., Higham, N.J.: Higher order Fréchet derivative of matrix functions and their applications. SIAM J. Matrix Anal. Appl. 35(3), 1019–1037 (2014) [29] Rice, J.R.: A theory of condition. SIAM J. Numer. Anal. 3(2), 287–310 (1966) [30] Seo, J.H., Kim, H.-M.: Convergence of pure and relaxed Newton methods for solving a matrix polynomial equation arising in stochastic models. Linear Algebra Appl. 440, 34–49 (2014). https://doi.org/10.1016/j.laa.2013.10.043 [31] Wu, C.L., Adler, R.J.: Nonlinear matrix algebra and engineering applications. J. Comput. Appl. Math. I(1), 25–37 (1975) |