1. Armstrong, T.P.:Numerical studies of the nonlinear Vlasov equation. Phys. Fluids 10(6), 1269-1280 (1967) 2. Ayuso, B., Carrillo, J.A., Shu, C.-W.:Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinet. Relat. Models 4, 955-989 (2011) 3. Ayuso, B., Carrillo, J.A., Shu, C.-W.:Discontinuous Galerkin methods for the multi-dimensional Vlasov-Poisson problem. Math. Models Methods Appl. Sci. 22(12), 1250042 (2012) 4. Birdsall, C.K., Langdon, A.B.:Plasma Physics via Computer Simulation. Institute of Physics, CRC Press, Boca Raton (2004) 5. Book, D.L., Boris, J.P.:Computational techniques for solution of convective equations. In:FiniteDiference Techniques for Vectorized Fluid Dynamics Calculations. Springer Series in Computational Physics, pp. 5-28. Springer, New York (1981) 6. Boyd, J.P.:Chebyshev and Fourier Spectral Methods. Courier Corporation, Chelmsford (2001) 7. Cai, Z., Li, R., Wang, Y.:Solving Vlasov equations using NRxx method. SIAM J. Sci. Comput. 35(6), A2807-A2831 (2013) 8. Cai, Z., Wang, Y.:Suppression of recurrence in the Hermite-spectral method for transport equations. SIAM J. Numer. Anal. 56(5), 3144-3168 (2018) 9. Camporeale, E., Delzanno, G.L., Bergen, B., Moulton, J.D.:On the velocity space discretization for the Vlasov-Poisson system:comparison between implicit Hermite spectral and Particle-in-Cell methods. Comput. Phys. Commun. 198, 47-58 (2016) 10. Cheng, Y., Gamba, I.M., Li, F., Morrison, P.J.:Discontinuous Galerkin methods for the Vlasov-Maxwell equations. SIAM J. Numer. Anal. 52(2), 1017-1049 (2014) 11. Cheng, Y., Gamba, I.M., Morrison, P.J.:Study of conservation and recurrence of Runge-Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems. J. Sci. Comput. 56(2), 319-349 (2013) 12. Di, Y., Fan, Y., Kou, Z., Li, R., Wang, Y.:Filtered hyperbolic moment method for the Vlasov equation. J. Sci. Comput. 79(2), 969-991 (2019) 13. Duclous, R., Dubroca, B., Filbet, F., Tikhonchuk, V.:High order resolution of the Maxwell-Fokker- Planck-Landau model intended for ICF applications. J. Comput. Phys. 228(14), 5072-5100 (2009) 14. Eliasson, B.:Numerical modelling of the two-dimensional Fourier transformed Vlasov-Maxwell system. J. Comput. Phys. 190(2), 501-522 (2003) 15. Filbet, F., Rey, T.:A hierarchy of hybrid numerical methods for multiscale kinetic equations. SIAM J. Sci. Comput. 37(3), A1218-A1247 (2015) 16. Filbet, F., Sonnendrücker, E.:Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150(3), 247-266 (2003) 17. Filbet, F., Sonnendrücker, E., Bertrand, P.:Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172(1), 166-187 (2001) 18. Filbet, F., Xiong, T.:A hybrid discontinuous Galerkin scheme for multi-scale kinetic equations. J. Comput. Phys. 372, 841-863 (2018) 19. Funaro, D., Kavian, O.:Approximation of some difusion evolution equations in unbounded domains by Hermite functions. Math. Comput. 57(196), 597-619 (1991) 20. Heath, R.E., Gamba, I.M., Morrison, P.J., Michler, C.:A discontinuous Galerkin method for the Vlasov-Poisson system. J. Comput. Phys. 231(4), 1140-1174 (2012) 21. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.:Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press, Cambridge (2007) 22. Holloway, J.P.:Spectral velocity discretizations for the Vlasov-Maxwell equations. Transp. Theory Stat. Phys. 25(1), 1-32 (1996) 23. Hou, T.Y., Li, R.:Computing nearly singular solutions using peseudo-spectral methods. J. Comput. Phys. 226, 379-397 (2007) 24. Joyce, G., Knorr, G., Meier, H.K.:Numerical integration methods of the Vlasov equation. J. Comput. Phys. 8(1), 53-63 (1971) 25. Klimas, A.J., Farrell, W.M.:A splitting algorithm for Vlasov simulation with flamentation fltration. J. Comput. Phys. 110(1), 150-163 (1994) 26. Le Bourdiec, S., De Vuyst, F., Jacquet, L.:Numerical solution of the Vlasov-Poisson system using generalized Hermite functions. Comput. Phys. Commun. 175(8), 528-544 (2006) 27. Manzini, G., Delzanno, G.L., Vencels, J., Markidis, S.:A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system. J. Comput. Phys. 317, 82-107 (2016) 28. Shoucri, M., Knorr, G.:Numerical integration of the Vlasov equation. J. Comput. Phys. 14(1), 84-92 29. Shumer, J.W., Holloway, J.P.:Vlasov simulations using velocity-scaled Hermite representations. J. Comput. Phys. 144(2), 626-661 (1998) 30. Sonnendrücker, E., Filbet, F., Friedman, A., Oudet, E., Vay, J.-L.:Vlasov simulations of beams with a moving grid. Comput. Phys. Commun. 164(1/2/3), 390-395 (2004) 31. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.:The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201-220 (1999) 32. Takizawa, K., Yabe, T., Nakamura, T.:Multi-dimensional semi-Lagrangian scheme that guarantees exact conservation. Comput. Phys. Commun. 148(2), 137-159 (2002) 33. Tang, T.:The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 14(3), 594- 606 (1993) 34. Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.:High order maximum principle preserving semi-Lagrangian fnite diference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618-639 (2014) 35. Yang, H., Li, F.:Error estimates of Runge-Kutta discontinuous Galerkin methods for the Vlasov-Maxwell system. ESAIM Math. Model. Numer. Anal. 49(1), 69-99 (2015) |