1. Alpert, B.K.:A class of bases in L2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246-262 (1993) 2. Berger, M.J., Colella, P.:Local adaptive mesh refnement for shock hydrodynamics. J. Comput. Phys. 82(1), 64-84 (1989) 3. Bungartz, H.-J., Griebel, M.:Sparse grids. Acta Numerica 13(1), 147-269 (2004) 4. Burstedde, C., Wilcox, L.C., Ghattas, O.:p4est:Scalable algorithms for parallel adaptive mesh refnement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103-1133 (2011) 5. Chang, Q., Jia, E., Sun, W.:Diference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148(2), 397-415 (1999) 6. Chang, Q., Wang, G.:Multigrid and adaptive algorithm for solving the nonlinear Schrödinger equation. J. Comput. Phys. 88(2), 362-380 (1990) 7. Chen, A., Cheng, Y., Liu, Y., Zhang, M.:Superconvergence of ultra-weak discontinuous Galerkin methods for the linear Schrödinger equation in one dimension. J. Sci. Comput. 82(1), 1-44 (2020) 8. Chen, A., Li, F., Cheng, Y.:An ultra-weak discontinuous Galerkin method for Schrödinger equation in one dimension. J. Sci. Comput. 78(2), 772-815 (2019) 9. Cheng, Y., Shu, C.-W.:A discontinuous Galerkin fnite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699-730 (2008) 10. Chiao, R.Y., Garmire, E., Townes, C.H.:Self-trapping of optical beams. Phys. Rev. Lett. 13(15), 479- 482 (1964) 11. Cockburn, B., Hou, S., Shu, C.-W.:The Runge-Kutta local projection discontinuous Galerkin fnite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545- 581 (1990) 12. Cockburn, B., Karniadakis, G. E., Shu, C.-W.:The development of discontinuous Galerkin methods. In:Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds). Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3-50. Springer, Berlin, Heidelberg (2000) 13. Cockburn, B., Shu, C.-W.:Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173-261 (2001) 14. De la Hoz, F., Vadillo, F.:An exponential time diferencing method for the nonlinear Schrödinger equation. Comput. Phys. Commun. 179(7), 449-456 (2008) 15. Gerhard, N., Müller, S.:Adaptive multiresolution discontinuous Galerkin schemes for conservation laws:multi-dimensional case. Comput. Appl. Math. 35(2), 321-349 (2016) 16. Grifths, D.F., Mitchell, A.R., Morris, J.L.:A numerical study of the nonlinear Schrödinger equation. Comput. Methods Appl. Mechan. Eng. 45, 177-215 (1984) 17. Guo, L., Xu, Y.:Energy conserving local discontinuous Galerkin methods for the nonlinear Schrödinger equation with wave operator. J. Sci. Comput. 65(2), 622-647 (2015) 18. Guo, W., Cheng, Y.:A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations. SIAM J. Sci. Comput. 38(6), A3381-A3409 (2016) 19. Guo, W., Cheng, Y.:An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions. SIAM J. Sci. Comput. 39(6), A2962-A2992 (2017) 20. Guo, W., Huang, J., Tao, Z., Cheng, Y.:An adaptive sparse grid local discontinuous Galerkin method for Hamilton-Jacobi equations in high dimensions. arXiv:2006.05250 (2020) 21. Huang, J., Cheng, Y.:An adaptive multiresolution discontinuous Galerkin method with artifcial viscosity for scalar hyperbolic conservation laws in multidimensions. arXiv:1906.00829 (2019) 22. Huang, J., Liu, Y., Guo, W., Tao, Z., Cheng, Y.:An adaptive multiresolution interior penalty discontinuous Galerkin method for wave equations in second order form. arXiv:2004.08525 (2020) 23. Huang, J., Shu, C.-W.:Error estimates to smooth solutions of semi-discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws. Numer. Methods Part. Difer. Equ. 33(2), 467-488 (2017) 24. Ismail, M., Taha, T.R.:Numerical simulation of coupled nonlinear Schrödinger equation. Math. Comput. Simul. 56(6), 547-562 (2001) 25. Karakashian, O., Makridakis, C.:A space-time fnite element method for the nonlinear Schrödinger equation:the discontinuous Galerkin method. Math. Comput. 67(222), 479-499 (1998) 26. Kormann, K.:A time-space adaptive method for the Schrödinger equation. Commun. Comput. Phys. 20(1), 60-85 (2016) 27. Liang, X., Khaliq, A.Q.M., Xing, Y.:Fourth order exponential time diferencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations. Commun. Comput. Phys. 17(2), 510-541 (2015) 28. Liu, H., Huang, Y., Lu, W., Yi, N.:On accuracy of the mass-preserving DG method to multi-dimensional Schrödinger equations. IMA J. Numer. Anal. 39(2), 760-791 (2019) 29. Lu, W., Huang, Y., Liu, H.:Mass preserving discontinuous Galerkin methods for Schrödinger equations. J. Comput. Phys. 282, 210-226 (2015) 30. Mallat, S.:A Wavelet Tour of Signal Processing. Elsevier, Amsterdam (1999) 31. Miles, J.W.:An envelope soliton problem. SIAM J. Appl. Math. 41(2), 227-230 (1981) 32. Newell, A.C.:Solitons in Mathematics and Physics. SIAM, Philadelphia (1985) 33. Pareschi, L., Russo, G.:Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1), 129-155 (2005) 34. Pathria, D., Morris, J.L.:Pseudo-spectral solution of nonlinear Schrödinger equations. J. Comput. Phys. 87(1), 108-125 (1990) 35. Reed, W.H., Hill, T.R.:Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos:Scientifc Lab, USA (1973) 36. Sanz-Serna, J., Verwer, J.:Conerservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Nume. Anal. 6(1), 25-42 (1986) 37. Sanz-Serna, J.M., Christie, I.:A simple adaptive technique for nonlinear wave problems. J. Comput. Phys. 67(2), 348-360 (1986) 38. Sheng, Q., Khaliq, A., Al-Said, E.:Solving the generalized nonlinear Schrödinger equation via quartic spline approximation. J. Comput. Phys. 166(2), 400-417 (2001) 39. Sulem, P., Sulem, C., Patera, A.:Numerical simulation of singular solutions to the two-dimensional cubic Schrödinger equation. Commun. Pure Appl. Math. 37(6), 755-778 (1984) 40. Taha, T.R., Ablowitz, M.I.:Analytical and numerical aspects of certain nonlinear evolution equations. Ⅱ. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55(2), 203-230 (1984) 41. Tao, Z.J., Jiang Y., Cheng Y.D.:An adaptive high-order piecewise polynomial based sparse grid collocation method with applications. arXiv:1912.03982 (2019) 42. Wang, Z., Tang, Q., Guo, W., Cheng, Y.:Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations. J. Comput. Phys. 314, 244-263 (2016) 43. Whitham, G.B.:Linear and Nonlinear Waves. John Wiley and Sons, New York (2011) 44. Xiong, C., Luo, F., Ma, X.:Uniform in time error analysis of HDG approximation for Schrödinger equation based on HDG projection. ESAIM Math. Modell. Numer. Anal. 52(2), 751-772 (2018) 45. Xu, Y., Shu, C.-W.:Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205(1), 72-97 (2005) 46. Zhang, R.:Compact implicit integration factor methods for some complex-valued nonlinear equations. Chinese Phys. B 21(4), 040205 (2012) 47. Zhang, R., Yu, X., Li, M., Li, X.:A conservative local discontinuous Galerkin method for the solution of nonlinear Schrödinger equation in two dimensions. Sci. China Math. 60(12), 2515-2530 (2017) |