1. Arber, T., Vann, R.:A critical comparison of Eulerian-grid-based Vlasov solvers. J. Comput. Phys. 180(1), 339-357 (2002) 2. Arnold, D., Brezzi, F., Cockburn, B., Marini, L.:Unifed analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Nume. Anal. 39(5), 1749-1779 (2002) 3. Bell, J., Colella, P., Glaz, H.:A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85(2), 257-283 (1989) 4. Blossey, P., Durran, D.:Selective monotonicity preservation in scalar advection. J. Comput. Phys. 227(10), 5160-5183 (2008) 5. Bochev, P., Moe, S., Peterson, K., Ridzal, D.:A conservative, optimization-based semi-Lagrangian spectral element method for passive tracer transport. In:COUPLED PROBLEMS 2015, VI International Conference on Computational Methods for Coupled Problems in Science and Engineering, Barcelona, Spain, pp. 23-34 (2015) 6. Bradley, A.M., Bosler, P.A., Guba, O., Taylor, M.A., Barnett, G.A.:Communication-efcient property preservation in tracer transport. SIAM J. Sci. Comput. 41(3), C161-C193 (2019) 7. Cai, X., Guo, W., Qiu, J.-M.:A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations. J. Sci. Comput. 73(2/3), 514-542 (2017) 8. Cai, X., Guo, W., Qiu, J.-M.:A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting. J. Comput. Phys. 354, 529-551 (2018) 9. Cai, X., Guo, W., Qiu, J.-M.:A high order semi-Lagrangian discontinuous Galerkin method for the two-dimensional incompressible Euler equations and the guiding center Vlasov model without operator splitting. J. Sci. Comput. 79(2), 1111-1134 (2019) 10. Cai, X., Qiu, J., Qiu, J.-M.:A conservative semi-Lagrangian HWENO method for the Vlasov equation. J. Comput. Phys. 323, 95-114 (2016) 11. Celia, M.A., Russell, T.F., Herrera, I., Ewing, R.E.:An Eulerian-Lagrangian localized adjoint method for the advection-difusion equation. Adv. Water Resources 13(4), 187-206 (1990) 12. Cheng, C.-Z., Knorr, G.:The integration of the Vlasov equation in confguration space. J. Comput. Phys. 22(3), 330-351 (1976) 13. Christlieb, A., Guo, W., Morton, M., Qiu, J.-M.:A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267, 7-27 (2014) 14. Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.:Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229(6), 1927-1953 (2010) 15. Crouseilles, N., Mehrenberger, M., Vecil, F.:Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson. In:ESAIM:Proceedings, vol. 32, pp. 211-230. EDP Sciences, (2011) 16. W. E., Shu, C.-W.:A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible fow. J. Comput. Phys. 110(1), 39-46 (1994) 17. Einkemmer, L.:A study on conserving invariants of the Vlasov equation in semi-Lagrangian computer simulations. J. Plasma Phys. 83(2), 705830203 (2017) 18. Einkemmer, L.:A performance comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions. J. Comput. Phys. 376, 937-951 (2019) 19. Erath, C., Nair, R.D.:A conservative multi-tracer transport scheme for spectral-element spherical grids. J. Comput. Phys. 256, 118-134 (2014) 20. Ewing, R.E., Wang, H.:Eulerian-Lagrangian localized adjoint methods for linear advection or advection-reaction equations and their convergence analysis. Comput. Mech. 12(1/2), 97-121 (1993) 21. Filbet, F., Sonnendrücker, E.:Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150(3), 247-266 (2003) 22. Filbet, F., Sonnendrücker, E., Bertrand, P.:Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172(1), 166-187 (2001) 23. Fischer, P., Mullen, J.:Filter-based stabilization of spectral element methods. Comptes Rendus de l'Académie des Sci.-Ser. I-Math. 332(3), 265-270 (2001) 24. Frenod, E., Hirstoaga, S.A., Lutz, M., Sonnendrücker, E.:Long time behaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic feld. Commun. Comput. Phys. 18(2), 263- 296 (2015) 25. Güçlü, Y., Christlieb, A.J., Hitchon, W.N.:Arbitrarily high order convected scheme solution of the Vlasov-Poisson system. J. Comput. Phys. 270, 711-752 (2014) 26. Guo, W., Nair, R., Qiu, J.-M.:A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed-sphere. Monthly Weather Rev. 142(1), 457-475 (2013) 27. Guo, Y., Xiong, T., Shi, Y.:A maximum-principle-satisfying high-order fnite volume compact WENO scheme for scalar conservation laws with applications in incompressible fows. J. Sci. Comput. 65(1), 83-109 (2015) 28. Hairer, E., Lubich, C., Wanner, G.:Geometric Numerical Integration:Structure-Preserving Algorithms for Ordinary Diferential Equations, vol. 31. Springer Science & Business Media (2006) 29. Harris, L., Lauritzen, P., Mittal, R.:A fux-form version of the conservative semi-Lagrangian multitracer transport scheme (CSLAM) on the cubed sphere grid. J. Comput. Phys. 230(4), 1215-1237 (2011) 30. Herrera, I., Ewing, R.E., Celia, M.A., Russell, T.F.:Eulerian-Lagrangian localized adjoint method:the theoretical framework. Numer. Methods Partial Difer. Equ. 9(4), 431-457 (1993) 31. Heumann, H., Hiptmair, R., Li, K., Xu, J.:Fully discrete semi-Lagrangian methods for advection of diferential forms. BIT Numer. Math. 52(4), 981-1007 (2012) 32. Huang, C.-S., Arbogast, T., Hung, C.-H.:A semi-Lagrangian fnite diference WENO scheme for scalar nonlinear conservation laws. J. Comput. Phys. 322, 559-585 (2016) 33. Lauritzen, P., Nair, R., Ullrich, P.:A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys. 229(5), 1401-1424 (2010) 34. Lee, D., Lowrie, R., Petersen, M., Ringler, T., Hecht, M.:A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes. J. Comput. Phys. 324, 289-302 (2016) 35. LeVeque, R.:High-resolution conservative algorithms for advection in incompressible fow. SIAM J. Numer. Anal. 33(2), 627-665 (1996) 36. Lin, S., Rood, R.:An explicit fux-form semi-Lagrangian shallow-water model on the sphere. Q. J. R. Meteorol. Soc. 123(544), 2477-2498 (1997) 37. Liu, J.-G., Shu, C.-W.:A high-order discontinuous Galerkin method for 2D incompressible fows. J. Comput. Phys. 160(2), 577-596 (2000) 38. Minion, M.L., Brown, D.L.:Performance of under-resolved two-dimensional incompressible fow simulations, ii. J. Comput. Phys. 138(2), 734-765 (1997) 39. Qiu, J.-M.:High-order mass-conservative semi-Lagrangian methods for transport problems. In:Handbook of Numerical Analysis, vol. 17, pp. 353-382. Elsevier (2016) 40. Qiu, J.-M., Christlieb, A.:A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229, 1130-1149 (2010) 41. Qiu, J.-M., Russo, G.:A high order multi-dimensional characteristic tracing strategy for the VlasovPoisson system. J. Sci. Comput. 71(1), 414-434 (2017) 42. Qiu, J.-M., Shu, C.-W.:Conservative high order semi-Lagrangian fnite diference WENO methods for advection in incompressible fow. J. Comput. Phys. 230(4), 863-889 (2011) 43. Qiu, J.-M., Shu, C.-W.:Conservative semi-Lagrangian fnite diference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10(4), 979-1000 (2011) 44. Qiu, J.-M., Shu, C.-W.:Positivity preserving semi-Lagrangian discontinuous Galerkin formulation:theoretical analysis and application to the Vlasov-Poisson system. J. Comput. Phys. 230(23), 8386- 8409 (2011) 45. Restelli, M., Bonaventura, L., Sacco, R.:A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible fows. J. Comput. Phys. 216(1), 195-215 (2006) 46. Rossmanith, J.A., Seal, D.C.:A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230(16), 6203-6232 (2011) 47. Shoucri, M.M.:A two-level implicit scheme for the numerical solution of the linearized vorticity equation. Int. J. Numer. Methods Eng. 17(10), 1525-1538 (1981) 48. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.:The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201-220 (1999) 49. Umeda, T.:A conservative and non-oscillatory scheme for Vlasov code simulations. Earth Planets Space 60(7), 773-779 (2008) 50. Wang, H., Dahle, H., Ewing, R., Espedal, M., Sharpley, R., Man, S.:An ELLAM scheme for advection-difusion equations in two dimensions. SIAM J. Sci. Comput. 20(6), 2160-2194 (1999) 51. Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.:High order maximum principle preserving semi-Lagrangian fnite diference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618-639 (2014) 52. Xiong, T., Russo, G., Qiu, J.-M.:High order multi-dimensional characteristics tracing for the incompressible Euler equation and the guiding-center Vlasov equation. J. Sci. Comput. 77(1), 263-282 (2018) 53. Xiu, D., Karniadakis, G.:A semi-Lagrangian high-order method for Navier-Stokes equations. J. Comput. Phys. 172(2), 658-684 (2001) 54. Xu, C.:Stabilization methods for spectral element computations of incompressible fows. J. Sci. Comput. 27(1/2/3), 495-505 (2006) 55. Yang, C., Filbet, F.:Conservative and non-conservative methods based on Hermite weighted essentially non-oscillatory reconstruction for Vlasov equations. J. Comput. Phys. 279, 18-36 (2014) 56. Yang, Y., Cai, X., Qiu, J.-M.:Optimal convergence and superconvergence of semi-Lagrangian discontinuous Galerkin methods for linear convection equations in one space dimension. Math. Comput. 89(325), 2113-2139 (2020) 57. Yoshida, H.:Construction of higher order symplectic integrators. Phys. Lett. A 150(5/6/7), 262-268 (1990) 58. Zhang, X., Shu, C.-W.:On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091-3120 (2010) 59. Zhong, X., Shu, C.-W.:A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 232(1), 397-415 (2013) 60. Zhu, H., Qiu, J., Qiu, J.-M.:An h-adaptive RKDG method for the Vlasov-Poisson system. J. Sci. Comput. 69(3), 1346-1365 (2016) 61. Zhu, H., Qiu, J., Qiu, J.-M.:An h-adaptive RKDG method for the two-dimensional incompressible Euler equations and the guiding center Vlasov model. J. Sci. Comput. 73(2/3), 1316-1337 (2017) |