1. Cockburn, B.:Discontinuous Galerkin methods for convection-dominated problems. In:Barth, T.J., Deconinck, H. (eds) High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9, pp. 69-224. Springer, Berlin, Heidelberg (1999) 2. Cockburn, B., Karniadakis, G., Shu, C.-W.:The development of discontinuous Galerkin methods. In:Cockburn, B., Karniadakis, G., Shu, C.-W. (eds) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3-50. Springer, Berlin, Heidelberg (2000) 3. Cockburn, B., Shu, C.-W.:Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173-261 (2001) 4. Cockburn, B., Shu, C.-W.:Foreword for the special issue on discontinuous Galerkin method. J. Sci. Comput. 22/23, 1-3 (2005) 5. Dawson, C.:Foreword for the special issue on discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 195, 3183 (2006) 6. Di Pietro, D.A., Ern, A.:Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin Heidelberg (2012) 7. Hesthaven, J., Warburton, T.:Nodal Discontinuous Galerkin Methods. Springer, New York (2008) 8. Kanschat, G.:Discontinuous Galerkin Methods for Viscous Flow. Deutscher Universitätsverlag, Wiesbaden (2007) 9. Li, B.:Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Birkhäuser, Basel (2006) 10. Reed, W.H., Hill, T.R.:Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientifc Laboratory (1973) 11. Rivière, B.:Discontinuous Galerkin Methods for Solving Elliptic and Parabolic equations. Theory and Implementation. SIAM, Philadelphia (2008) 12. Shu, C.-W.:Discontinuous Galerkin methods:general approach and stability. In:Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds) Numerical Solutions of Partial Diferential Equations. Advanced Courses in Mathematics CRM Barcelona, pp. 149-201. Basel, Birkhäuser (2009) |