[1] Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994) [2] Bai, J., Feng, X.-C.: Fractional-order anisotropic diffusion for image denoising. IEEE T. Image Process. 16, 2492-2502 (2007) [3] Bai, Z.-Z.: Several splittings for non-Hermitian linear systems. Sci. China, Ser. A Math. 51(8), 1339-1348 (2008) [4] Bai, Z.-Z.: Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations. Numer. Linear Algebra Appl. 25, e2157 (2018) [5] Bai, Z.-Z.: A two-step matrix splitting iteration paradigm based on one single splitting for solving systems of linear equations. Numer. Linear Algebra Appl. 31, e2510 (2024) [6] Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844-863 (2005) [7] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603-626 (2003) [8] Bai, Z.-Z., Lu, K.-Y.: On banded \begin{document}$ M $\end{document}-splitting iteration methods for solving discretized spatial fractional diffusion equations. BIT Numer. Math. 59, 1-33 (2019) [9] Bai, Z.-Z., Lu, K.-Y.: On regularized Hermitian splitting iteration methods for solving discretized almost-isotropic spatial fractional diffusion equations. Numer. Linear Algebra Appl. 27, e2274 (2020) [10] Bai, Z.-Z., Lu, K.-Y.: Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations. J. Comput. Phys. 404, 1-13 (2020) [11] Bai, Z.-Z., Lu, K.-Y., Pan, J.-Y.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24, e2093 (2017) [12] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [13] Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models. Phys. Plasmas 8, 5096-5103 (2001) [14] Chen, F., Li, T.-Y., Muratova, G.V.: Lopsided scaled HSS preconditioner for steady-state space-fractional diffusion equations. Calcolo 58, 26 (2021) [15] Chen, F., Ren, B.-C.: On preconditioning of double saddle point linear systems arising from liquid crystal director modeling. Appl. Math. Lett. 136, 108445 (2023) [16] Chen, H., Lyu, W., Zhang, T.-T.: A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 360, 1-14 (2018) [17] Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715-725 (2013) [18] Lin, F.-R., Yang, S.-W., Jin, X.-Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109-117 (2014) [19] Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006) [20] Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Appl. Math. Comput. 56, 1138-1145 (2008) [21] Ng, M.K., Bai, Z.-Z.: A hybrid preconditioner of banded matrix approximation and alternating direction implicit iteration for symmetric Sinc-Galerkin linear systems. Linear Algebra Appl. 366, 317-335 (2003) [22] Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Engrg. Software 41, 9-12 (2010) [23] Pan, J.-Y., Bai, Z.-Z., Ng, M.K.: Two-step waveform relaxation methods for implicit linear initial value problems. Numer. Linear Algebra Appl. 12, 293-304 (2005) [24] Pan, J.-Y., Ke, R.-H., Ng, M.K., Sun, H.-W.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698-A2719 (2014) [25] Pan, J.-Y., Ng, M.K., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806-A2826 (2016) [26] Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749-755 (2002) [27] Sokolov, I.M., Klafter, J., Blumen, A.: Fractional kinetics. Phys. Today 55, 28-53 (2002) [28] Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205-213 (2006) [29] Wang, H., Wang, K.-X.: An \begin{document}$ O(N\log {2N}) $\end{document} alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830-7839 (2011) [30] Wang, H., Wang, K.-X., Sircar, T.: A direct \begin{document}$ O(N\log {2N}) $\end{document} finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095-8104 (2010) |