[1] Achouri, T., Ayadi, M., Habbal, A., Yahyaoui, B.: Numerical analysis for the two-dimensional Fisher-Kolmogorov-Petrovski-Piskunov equation with mixed boundary condition. J. Appl. Math. Comput. 68(6), 3589-3614 (2021) [2] Ahmad, S., Ullah, A., Partohaghighi, M., Saifullah, S., Akgul, A., Jarad, F.: Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model. AIMS Math. 7(3), 4778-4792 (2022) [3] Arfaoui, H., Makhlouf, A.B.: Some results for a class of two-dimensional fractional hyperbolic differential systems with time delay. J. Appl. Math. Comput. 68(4), 2389-2405 (2021) [4] Atangana, A.: On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput. 273, 948-956 (2016) [5] Blanco-Cocom, L., Avila-Vales, E.: Convergence and stability analysis of the θ-method for delayed diffusion mathematical models. Appl. Math. Comput. 231, 16-25 (2014) [6] Butzer, P.L., Diekmeis, W., Jansen, H., Nessel, R.J.: Alternative forms with orders of the Lax equivalence theorem in Banach spaces. Computing 17(4), 335-342 (1977) [7] Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743-1750 (2012) [8] Chen, S., Liu, F., Turner, I., Anh, V.: An implicit numerical method for the two-dimensional fractional percolation equation. Appl. Math. Comput. 219(9), 4322-4331 (2013) [9] Corti, M., Antonietti, P.F., Bonizzoni, F., Dede, L., Quarteroni, A.: Discontinuous Galerkin methods for Fisher-Kolmogorov equation with application to a-Synuclein spreading in Parkinson’s disease. Comput. Methods Appl. Mech. Eng. 417, 116450 (2023) [10] Dehghan, M., Abbaszadeh, M.: A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput. Math. Appl. 75(8), 2903-2914 (2018) [11] Demir, A., Bayrak, M.A., Ozbilge, E.: An approximate solution of the time-fractional Fisher equation with small delay by residual power series method. Math. Probl. Eng. 2018, 1-8 (2018) [12] El-Danaf, T.S., Hadhoud, A.R.: Computational method for solving space fractional Fisher’s nonlinear equation. Math. Method. Appl. Sci. 37(5), 657-662 (2013) [13] Garmanjani, G., Cavoretto, R., Esmaeilbeigi, M.: A RBF partition of unity collocation method based on finite difference for initial-boundary value problems. Comput. Math. Appl. 75(11), 4066-4090 (2018) [14] Hao, Z., Zhang, Z., Du, R.: Fractional centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys. 424, 109851-109868 (2021) [15] Hendy, A.S., Zaky, M.A., De Staelen, R.H.: A general framework for the numerical analysis of high-order finite difference solvers for nonlinear multi-term time-space fractional partial differential equations with time delay. Appl. Numer. Math. 169, 108-121 (2021) [16] Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985) [17] Ilati, M.: Analysis and application of the interpolating element-free Galerkin method for extended Fisher-Kolmogorov equation which arises in brain tumor dynamics modeling. Numer. Algorithms 85(2), 485-502 (2019) [18] Izadi, M., Srivastava, H.M.: An optimized second order numerical scheme applied to the non-linear Fisher’s reaction-diffusion equation. J. Interdiscip. Math. 25(2), 471-492 (2022) [19] Kenkre, V.: Results from variants of the Fisher equation in the study of epidemics and bacteria. Phys. A. 342(1/2), 242-248 (2004) [20] Kwak, D.Y., Kwon, H.J., Lee, S.: Multigrid algorithm for cell centered finite difference on triangular meshes. Appl. Math. Comput. 105, 77-85 (1999) [21] Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V.: Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Open. Phys. 11(10), 1221-1232 (2013) [22] Liu, M.Z., Spuker, M.N.: The stability of the θ-methods in the numerical solution of delay differential equations. IMA. J. Numer. Anal. 10, 31-48 (1990) [23] Liu, Z., Zeng, S., Bai, Y.: Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19(1), 188-211 (2016) [24] Macias-Diaz, J.: A bounded numerical method for approximating a hyperbolic and convective generalization of Fisher’s model with nonlinear damping. Appl. Math. Lett. 25(6), 946-951 (2012) [25] Majeed, A., Kamran, M., Abbas, M., Singh, J.: An efficient numerical technique for solving time-fractional generalized Fisher’s equation. Front. Phys. 8, 293 (2020) [26] Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249-261 (2006) [27] Oruç, O.: An efficient wavelet collocation method for nonlinear two-space dimensional Fisher-Kolmogorov-Petrovsky-Piscounov equation and two-space dimensional extended Fisher-Kolmogorov equation. Eng. Comput. 36(3), 839-856 (2019) [28] Ozkose, F., Yavuz, M., Senel, M.T., Habbireeh, R.: Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom. Chaos Solitons Fractals 157, 111954-111978 (2022) [29] Pan, X., Shu, H., Wang, L., Wang, X.S.: Dirichlet problem for a delayed diffusive hematopoiesis model. Nonlinear Anal. Real. World Appl. 48, 493-516 (2019) [30] Rashid, S., Kubra, K.T., Sultana, S., Agarwal, P., Osman, M.: An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method. J. Comput. Appl. Math. 413, 114378-114401 (2022) [31] Roul, P., Rohil, V.: A high order numerical technique and its analysis for nonlinear generalized Fisher’s equation. J. Comput. Appl. Math. 406, 114047-114065 (2022) [32] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Transl. from Russian. Gordon and Breach, New York (1993) [33] Shakeel, M., Hussain, I., Ahmad, H., Ahmad, I., Thounthong, P., Zhang, Y.F.: Meshless technique for the solution of time-fractional partial differential equations having real-world applications. J. Funct. Spaces 2020, 1-17 (2020) [34] Sun, N., Fang, J.: Propagation dynamics of Fisher-KPP equation with time delay and free boundaries. Calc. Var. Partial Differential Equations 58, 148-186 (2019) [35] Thomas, J.: Numerical Partial Differential Equations: Finite Difference Methods. Springer, Berlin (1998) [36] Travis, C.C., Webb, G.F.: Existence and stability for partial functional differential equations. Trans. Am. Math. Soc. 200, 395-418 (1974) [37] Wang, F., Khan, M.N., Ahmad, I., Ahmad, H., Abu-Zinadah, H., Chu, Y.: Numerical solution of travelling waves in chemical kinetics: time-fractional Fishers equations. Fractals 30(2), 2240051-2240062 (2022) [38] Wu, F., Li, D., Wen, J., Duan, J.: Stability and convergence of compact finite difference method for parabolic problems with delay. Appl. Math. Comput. 322(9), 129-139 (2018) [39] Yang, S.: Numerical simulation for the two-dimensional and three-dimensional Riesz space fractional diffusion equations with delay and a nonlinear reaction term. Int. J. Comput. Math. 96(10), 1957-1978 (2018) [40] Zaky, M.A., Hendy, A.S., Macias-Diaz, J.E.: Semi-implicit Galerkin-Legendre spectral schemes for nonlinear time-space fractional diffusion-reaction equations with smooth and nonsmooth solutions. J. Sci. Comput. 82, 13-40 (2020) [41] Zhang, J., Wei, P., Wang, M.: The investigation into the exact solutions of the generalized time-delayed Burgers-Fisher equation with positive fractional power terms. Appl. Math. Model. 36(5), 2192-2196 (2012) [42] Zhang, Q., Li, T.: Asymptotic stability of compact and linear theta-methods for space fractional delay generalized diffusion equation. J. Sci. Comput. 81(3), 2413-2446 (2019) [43] Zhang, T., Li, Y.: Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations. Appl. Math. Lett. 124, 107709-107717 (2022) [44] Zhao, L., Deng, W., Hesthaven, J.S.: Characterization of image spaces of Riemann-Liouville fractional integral operators on Sobolev spaces θ. Science China Mathematics 64(12), 2611-2636 (2020) [45] Zhu, X., Nie, Y., Wang, J., Yuan, Z.: A numerical approach for the Riesz space-fractional Fisher’ equation in two-dimensions. Int. J. Comput. Math. 94(2), 296-315 (2015) |