[1] Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886-905 (1996) [2] Amestoy, P.R., Davis, T.A., Duff, I.S.: Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Trans. Math. Software 30(3), 381-388 (2004) [3] Arioli, M., Scott, J.: Chebyshev acceleration of iterative refinement. Numer. Algorithms 66(3), 591-608 (2014) [4] Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994) [5] Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical and computational efficiency of solvers for two-phase problems. Comput. Math. Appl. 65(3), 301-314 (2013) [6] Axelsson, O., Farouq, S., Neytcheva, M.: Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems: Poisson and convection-diffusion control. Numer. Algorithms 73(3), 631-663 (2016) [7] Axelsson, O., Farouq, S., Neytcheva, M.: Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems: Stokes control. Numer. Algorithms 74(1), 19-37 (2017) [8] Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algorithms 66(4), 811-841 (2014) [9] Bai, Z.-Z.: Rotated block triangular preconditioning based on PMHSS. Sci. China Math. 56, 2523-2538 (2013) [10] Bai, Z.-Z.: On preconditioned iteration methods for complex linear systems. J. Eng. Math. 93(1), 41-60 (2015) [11] Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93-111 (2010) [12] Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 56(2), 297-317 (2011) [13] Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33(1), 343-369 (2013) [14] Bai, Z.-Z., Chen, F., Wang, Z.-Q.: Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices. Numer. Algorithms 62(4), 655-675 (2013) [15] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603-626 (2003) [16] Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98(1), 1-32 (2004) [17] Bai, Z.-Z., Hadjidimos, A.: Optimization of extrapolated Cayley transform with non-Hermitian positive definite matrix. Linear Algebra Appl. 310, 5-18 (2017) [18] Bai, Z.-Z., Lu, K.-Y.: Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations. Appl. Numer. Math. 163, 126-146 (2021) [19] Bai, Z.-Z., Lu, K.-Y.: An economic implementation of the optimal rotated block-diagonal preconditioning method. Numer. Algorithms 93, 85-101 (2023) [20] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia, PA (2021) [21] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1-137 (2005) [22] Bosch, J., Stoll, M.: Preconditioning for vector-valued Cahn-Hilliard equations. SIAM J. Sci. Comput. 37(5), s216-s243 (2014) [23] Elman, H.C., Ramage, A., Silvester, D.J.: IFISS: a computational laboratory for investigating incompressible flow problems. SIAM Rev. 56(2), 261-273 (2014) [24] Golub, G.H., Overton, M.L.: The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems. Numer. Math. 53(5), 571-593 (1988) [25] Golub, G.H., Varga, R.S.: Chebychev semi-iterative methods, successive over-relaxation iterative methods, and second-order Richardson iterative methods. Parts I and II. Numer. Math. 3(1), 147-168 (1961) [26] Gutknecht, M., Röllin, S.: The Chebyshev iteration revisted. Parallel Comput. 28(2), 263-283 (2002) [27] Hezari, D., Edalatpour, V., Salkuyeh, D.K.: Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations. Numer. Linear Algebra Appl. 22(4), 761-776 (2015) [28] Liang, Z.-Z., Zhang, G.-F.: Robust additive block triangular preconditioners for block two-by-two linear systems. Numer. Algorithms 82(2), 503-537 (2019) [29] Liang, Z.-Z., Zhang, G.-F.: On Chebyshev accelerated iteration methods for two-by-two block linear systems. J. Comput. Appl. Math. 391, 113449 (2021) [30] Manteuffel, T.A.: The Tchebychev iteration for nonsymmetric linear systems. Numer. Math. 28(3), 307-327 (1977) [31] Ng, M.K., Pan, J.-Y.: Weighted Toeplitz regularized least squares computation for image restoration. SIAM J. Sci. Comput. 36(1), B94-B121 (2014) [32] Nocedal, J., Wright, S. J.: Numerical optimization. In: Spinger Series in Operations Research, Springer-Verlag, New York (2006) [33] Notay, Y.: AGMG software and documentation. http://agmg.eu/ [34] Orban, D., Arioli, M.: Iterative Solution of Symmetric Quasi-definite Linear Systems. SIAM, Philadelphia (2017) [35] Pearson, J.W.: Preconditioned iterative methods for Navier-Stokes control problems. J. Comput. Phys. 292, 194-206 (2015) [36] Pearson, J.W.: Fast iterative solvers for large matrix systems arising from time-dependent Stokes control problems. Appl. Numer. Math. 108, 87-101 (2016) [37] Pearson, J.W., Stoll, M., Wathen, A.J.: Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 33(4), 1126-1152 (2012) [38] Pearson, J.W., Wathen, A.J.: Matching Schur complement approximations for certain saddle-point systems. In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, pp. 1001-1016. Springer (2018) [39] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003) [40] Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856-869 (1986) [41] Salkuyeh, D.K., Hezari, D., Edalatpour, V.: Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations. Int. J. Comput. Math. 92(4), 802-815 (2015) [42] Stoll, M., Wathen, A.J.: All-at-once solution of time-dependent PDE-constrained optimization problems. Technical Report 1017, The Mathematical Institute, University of Oxford (2010) [43] Stoll, M., Wathen, A.J.: All-at-once solution of time-dependent Stokes control. J. Comput. Phy. 232(1), 498-515 (2013) [44] Van Rienen, U.: Numerical Methods in Computational Electrodynamic: Linear Systems in Practical Applications. Springer, Berlin/Heidelberg (2001) [45] Varga, R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962) [46] Wang, T., Lu, L.-Z.: Alternating-directional PMHSS iteration method for a class of two-by-two block linear systems. Appl. Math. Lett. 58, 159-164 (2016) [47] Wang, Z.-Q.: On a Chebyshev accelerated splitting iteration method with application to two-by-two block linear systems. Numer. Linear Algebra Appl. 25(5), e2117 (2018) [48] Wathen, A.J., Rees, T.: Chebyshev semi-iteration in preconditioning for problems including the mass matrix. Electron. Trans. Numer. Anal. 34, 125-135 (2009) |