[1] Abbas, S., Benchohra, M., Graef, J.R.: Coupled systems of Hilfer fractional differential inclusions in Banach spaces. Commun. Pure Appl. Anal. 17(6), 2479 (2018) [2] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. Walter de Gruyter GmbH, Berlin, Boston (2018) [3] Abdo, M.S., Panchal, S.K., Bhairat, S.P.: Existence of solution for Hilfer fractional differential equations with boundary value conditions. arXiv:1909.13680 (2019) [4] Ahmad, D., Ali, A., Mahariq, I., Ur Rahman, G., Shah, K.: Investigation of nonlinear fractional delay differential equation via singular fractional operator. Int. J. Nonlinear Sci. Numer. Simul. 24(2), 645-660 (2023) [5] Ahmad, I., Shah, K., Our Rahman, G., Baleanu, D.: Stability analysis for a nonlinear coupled system of fractional hybrid delay differential equations. Math. Methods Appl. Sci. 43(15), 8669-8682 (2020) [6] Ali, A., Khan, M.Y., Sinan, M., Allehiany, F., Mahmoud, E.E., Abdel-Aty, A.-H., Ali, G.: Theoretical and numerical analysis of novel Covid-19 via fractional order mathematical model. Results Phys. 20, 103676 (2021) [7] Ali, A., Shah, K., Khan, R.A.: Numerical treatment for traveling wave solutions of fractional Whitham-Broer-Kaup equations. Alex. Eng. J. 57(3), 1991-1998 (2018) [8] Ali, G., Shah, K., Abdeljawad, T., Khan, H., Ur Rahman, G., Khan, A.: On existence and stability results to a class of boundary value problems under Mittag-Leffler power law. Adv. Differ. Equ. 2020(1), 1-13 (2020) [9] Ali, G., Shah, K., Rahman, G.U.: Existence of solution to a class of fractional delay differential equation under multi-points boundary conditions. Arab. J. Basic Appl. Sci. 27(1), 471-479 (2020) [10] Anastassiou, G.A.: Unification of Fractional Calculi with Applications. Springer, New York (2022) [11] Aslam, M., Gómez-Aguilar, J.F., Ur Rahman, G., Murtaza, R.: Existence, uniqueness, and Hyers-Ulam stability of solutions to nonlinear p-Laplacian singular delay fractional boundary value problems. Math. Methods Appl. Sci. (2021) [12] Faizullah, F., Bux, M., Rana, M., Our Rahman, G.: Existence and stability of solutions to non-linear neutral stochastic functional differential equations in the framework of G-Brownian motion. Adv. Differ. Equ. 2017(1), 1-14 (2017) [13] Furati, K.M., Kassim, M.D., Tatar, E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64(6), 1616-1626 (2012) [14] Haq, F., Akram, M., Shah, K., Rahman, G.: Study of new monotone iterative technique for a class of arbitrary order differential equations. Comput. Methods Differ. Equ. 8(4), 639-647 (2020) [15] Hilfer, R., Luchko, Y., Tomovski, Z.: Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12(3), 299-318 (2009) [16] Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27(4), 222 (1941) [17] Jarad, F., Abdeljawad, T., Alzabut, J.: Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 226, 3457-3471 (2017) [18] Kamocki, R., Obczynski, C.: On fractional Cauchy-type problems containing Hilfer’s derivative. Electron. J. Qual. Theory Differ. Equ. 2016(50), 1-12 (2016) [19] Karakoç, F.: Existence and uniqueness for fractional order functional differential equations with Hilfer derivative. Differ. Equ. Appl, 12, 323-336 (2020) [20] Khan, F.M., Khan, Z.U., Lyu, Y.-P., Yusuf, A., Din, A.: Investigating of fractional order dengue epidemic model with ABC operator. Results Phys. 24, 104075 (2021) [21] Khan, H., Ahmed, S., Alzabut, J., Azar, A.T.: A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy. Chaos Solit. Fract. 174, 113901 (2023) [22] Khan, H., Alzabut, J., Gulzar, H., Tunç, O., Pinelas, S.: On system of variable order nonlinear p-Laplacian fractional differential equations with biological application. Mathematics 11(8), 1913 (2023) [23] Kilbas, A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations (Volume 204) (North-Holland Mathematics Studies, Volume 204), 1st Edition. Elsevier, Amsterdam (2006) [24] Liu, X., Liu, L., Wu, Y.: Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound. Value Probl. 2018(1), 1-21 (2018) [25] Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998) [26] Ur Rahman, G., Agarwal, R.P., Ahmad, D.: Existence and stability analysis of nth order multi term fractional delay differential equation. Chaos Solit. Fract. 155, 111709 (2022) [27] Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72(2), 297-300 (1978) [28] Shah, K., Khalil, H., Khan, R.A.: Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations. Chaos Solit. Fract. 77, 240-246 (2015) [29] Stamova, I.M., Stamov, G.T.: Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications. CRC Press, New York (2017) [30] Ulam, S.M.: A Collection of Mathematical Problems, vol. 8. Interscience Publishers, New York (1960) [31] Vivek, D., Kanagarajan, K., Elsayed, E.: Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions. Mediterr. J. Math. 15(1), 1-21 (2018) [32] Vu, H., Van Hoa, N.: Hyers-Ulam stability of fuzzy fractional Volterra integral equations with the kernel Ψ-function via successive approximation method. Fuzzy Sets Syst. 419, 67-98 (2021) [33] Wang, J., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266, 850-859 (2015) [34] Zhou, Y., Wang, J., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016) |