[1] Abd-Rabo, M.A., Zakarya, M., Cesarano, C., Aly, S.: Bifurcation analysis of time-delay model of consumer with the advertising effect. Symmetry 13(3), 417 (2021) [2] Barnett, W., Cymbalyuk, G.: Bifurcation Analysis, pp. 1-6. Springer, New York (2013) [3] Bass, F.M.: A new product growth model for consumer durables. Manage. Sci. 15, 215-227 (1976) [4] Botero, M.V.P., Ortiz, S.B.V.: The potential market for sustainable housing under the contingent valuation method. City of Palmira. Cuadernos de Administración 35(65), 45-59 (2019) [5] Carvalho Braga, D., Mello, L.F., Rocsoreanu, C., Sterpu, M.: Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discret. Contin. Dyn. Syst. Ser. B 11, 785-803 (2009) [6] Chen, H., Zhang, C.: Bifurcations and hydra effects in a reaction-diffusion predator-prey model with Holling II functional response. J. Appl. Anal. Comput. 13(1), 424-444 (2023) [7] Dorfman, R., Steiner, P.O.: Optimal Advertising and Optimal Quality, pp. 165-166. Springer, Berlin, Heidelberg (1976) [8] Ellis, J., Petrovskaya, N., Petrovskii, S.: Effect of density-dependent individual movement on emerging spatial population distribution: Brownian motion vs levy flights. J. Theor. Biol. 464, 159-178 (2019) [9] Feichtinger, G.: Hopf bifurcation in an advertising diffusion model. J. Econ. Behav. Organ. 17(3), 401-411 (1992) [10] Fu, X., Wu, R., Chen, M., Liu, H.: Spatiotemporal complexity in a diffusive Brusselator model. J. Math. Chem. 59, 2344-2367 (2021) [11] Gambino, G., Giunta, V., Lombardo, M.C., Rubino, G.: Cross-diffusion effects on stationary pattern formation in the Fitzhugh-Nagumo model. Discret. Contin. Dyn. Syst. B 27(12), 7783 (2022) [12] Glaister, S.M.: Advertising policy and returns to scale in markets where information is passed between individuals. Economica 41, 139-156 (1974) [13] Golovin, A., Matkowsky, B.J., Volpert, V.A.: Turing pattern formation in the Brusselator model with superdiffusion. SIAM J. Appl. Math. 69(1), 251-272 (2008) [14] Hu, D., Zhang, Y., Zheng, Z., Liu, M.: Dynamics of a delayed predator-prey model with constant-yield prey harvesting. J. Appl. Anal. Comput. 12(1), 302-335 (2022) [15] Jacquemin, A.: Optimal control and advertising policy. Metroeconomica 25, 200-207 (1973) [16] Jiang, W., Cao, X., Wang, C.: Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discret. Contin. Dyn. Syst. Ser. B 27(2), 1163-1178 (2022) [17] Jin, D., Yang, R.: Hopf bifurcation in a predator-prey model with memory effect and intra-species competition in predator. J. Appl. Anal. Comput. 13(3), 1321-1335 (2023) [18] Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616-1620 (2010) [19] Lu, M., Xiang, C., Huang, J., Wang, H.: Bifurcations in the diffusive Bazykin model. J. Differential Equations 323(25), 280-311 (2022) [20] Mazzucato, M., Semmler, W.: The determinants of stock price volatility: an industry study. Nonlinear Dyn. Psychol. Life Sci. 6, 197-216 (2002) [21] McGee, J.: The economics of advertising. Econ. J. 83(329), 295-297 (1973) [22] Nerlove, M.L., Arrow, K.J.: Optimal advertising policy under dynamic conditions. Economica 29, 167-168 (1962) [23] Peres, R., Muller, E., Mahajan, V.: Innovation diffusion and new product growth models: a critical review and research directions. Int. J. Res. Mark. 27, 91-106 (2010) [24] Piccardi, C., Casagrandi, R.: Remarks on Epidemic Spreading in Scale-Free Networks, pp. 77-89. Springer, Berlin, Heidelberg (2009) [25] Qu, M., Zhang, C.: Turing instability and patterns of the Fitzhugh-Nagumo model in square domain. J. Appl. Anal. Comput. 11(3), 1371-1390 (2021) [26] Song, D., Song, Y., Li, C.: Stability and Turing patterns in a predator-prey model with hunting cooperation and Allee effect in prey population. J. Theor. Biol. 30(9), 2050137 (2020) [27] Song, Y., Yang, R., Sun, G.: Pattern dynamics in a Gierer-Meinhardt model with a saturating term. Appl. Math. Model. 46, 476-491 (2017) [28] Wang, Y., Zhou, X., Jiang, W.: Bifurcations in a diffusive predator-prey system with linear harvesting. Chaos Solitons Fractals 169, 113286 (2023) [29] Wang, Y., Zhou, X., Jiang, W., Qi, L.: Turing instability and pattern formation in a diffusive Sel’kov-Schnakenberg system. J. Math. Chem. 61(5), 1036-1062 (2023) [30] Yang, G., Tang, X.: Dynamics analysis of three-species reaction-diffusion system via the multiple scale perturbation method. J. Appl. Anal. Comput. 12(1), 206-229 (2022) |