1. Abgrall, R.: Residual distribution schemes: current status and future trends. Comput. Fluids 35(7), 641–669 (2006) 2. Abgrall, R.: High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. J. Sci. Comput. 73(2/3), 461–494 (2017) 3. Abgrall, R., Ivanova, K.: Staggered residual distribution scheme for compressible flow. arXiv: 2111. 10647 (2022) 4. Abgrall, R., Bacigaluppi, P., Tokareva, S.: High-order residual distribution scheme for the timedependent Euler equations of fluid dynamics. Comput. Math. Appl. 78(2), 274–297 (2019) 5. Abgrall, R., Le Mélédo, E., Öffner, P., Torlo, D.: Relaxation deferred correction methods and their applications to residual distribution schemes. SMAI J. Comput. Math. 8, 125–160 (2022) 6. Abgrall, R., Torlo, D.: High order asymptotic preserving deferred correction implicit-explicit schemes for kinetic models. SIAM J. Sci. Comput. 42(3), 816–845 (2020) 7. Bacigaluppi, P., Abgrall, R., Tokareva, S.: “A posteriori’’ limited high order and robust schemes for transient simulations of fluid flows in gas dynamics. J. Comput. Phys. 476, 111898 (2023) 8. Boscarino, S., Qiu, J.-M.: Error estimates of the integral deferred correction method for stiff problems. ESAIM Math. Model. Numer. Anal. 50(4), 1137–1166 (2016) 9. Boscarino, S., Qiu, J.-M., Russo, G.: Implicit-explicit integral deferred correction methods for stiff problems. SIAM J. Sci. Comput. 40(2), 787–816 (2018) 10. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Auckland (2016) 11. Cheli, F., Diana, G.: Advanced Dynamics of Mechanical Systems. Springer, Cham (2015) 12. Christlieb, A., Ong, B., Qiu, J.-M.: Comments on high-order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 4(1), 27–56 (2009) 13. Christlieb, A., Ong, B., Qiu, J.-M.: Integral deferred correction methods constructed with high order Runge-Kutta integrators. Math. Comput. 79(270), 761–783 (2010) 14. Ciallella, M., Micalizzi, L., Öffner, P., Torlo, D.: An arbitrary high order and positivity preserving method for the shallow water equations. Comput. Fluids 247, 105630 (2022) 15. Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38(6), 2047–2078 (2001) 16. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40(2), 241–266 (2000) 17. Fox, L., Goodwin, E.: Some new methods for the numerical integration of ordinary differential equations. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 373–388. Cambridge University Press, Cambridge (1949) 18. Han Veiga, M., Öffner, P., Torlo, D.: DeC and ADER: similarities, differences and a unified framework. J. Sci. Comput. 87(1), 1–35 (2021) 19. Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214(2), 633–656 (2006) 20. Jund, S., Salmon, S.: Arbitrary high-order finite element schemes and high-order mass lumping. Int. J. Appl. Math. Comput. Sci. 17(3), 375–393 (2007) 21. Ketcheson, D., Bin Waheed, U.: A comparison of high-order explicit Runge-Kutta, extrapolation, and deferred correction methods in serial and parallel. Commun. Appl. Math. Comput. Sci. 9(2), 175–200 (2014) 22. Layton, A.T., Minion, M.L.: Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys. 194(2), 697–715 (2004) 23. Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT Numer. Math. 45(2), 341–373 (2005) 24. Liu, Y., Shu, C.-W., Zhang, M.: Strong stability preserving property of the deferred correction time discretization. J. Comput. Math. 26(5), 633–656 (2008) 25. Micalizzi, L., Torlo, D., Boscheri, W.: Efficient iterative arbitrary high order methods: an adaptive bridge between low and high order. arXiv: 2212. 07783 (2022) 26. Michel, S., Torlo, D., Ricchiuto, M., Abgrall, R.: Spectral analysis of continuous FEM for hyperbolic PDEs: influence of approximation, stabilization, and time-stepping. J. Sci. Comput. 89(2), 1–41 (2021) 27. Michel, S., Torlo, D., Ricchiuto, M., Abgrall, R.: Spectral analysis of high order continuous FEM for hyperbolic PDEs on triangular meshes: influence of approximation, stabilization, and time-stepping. J. Sci. Comput. 94(3), 49 (2023) 28. Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1(3), 471–500 (2003) 29. Minion, M.L.: Semi-implicit projection methods for incompressible flow based on spectral deferred corrections. Appl. Numer. Math. 48(3/4), 369–387 (2004) 30. Minion, M.L.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2011) 31. Öffner, P., Torlo, D.: Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. Appl. Numer. Math. 153, 15–34 (2020) 32. Pasquetti, R., Rapetti, F.: Cubature points based triangular spectral elements: an accuracy study. J. Math. Stud. 51(1), 15–25 (2018) 33. Ricchiuto, M., Abgrall, R.: Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys. 229(16), 5653–5691 (2010) 34. Ricchiuto, M., Torlo, D.: Analytical travelling vortex solutions of hyperbolic equations for validating very high order schemes. arXiv: 2109. 10183 (2021) 35. Speck, R., Ruprecht, D., Emmett, M., Minion, M., Bolten, M., Krause, R.: A multi-level spectral deferred correction method. BIT Numer. Math. 55(3), 843–867 (2015) 36. Torlo, D.: Hyperbolic problems: high order methods and model order reduction. PhD thesis, University Zurich (2020) 37. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, vol. 375. Springer, Berlin (1996) |