1. Abgrall, R.: Residual distribution schemes: current status and future trends. Comput. Fluids 35(7), 641–669 (2006). https:// doi. org/ 10. 1016/j. compfluid. 2005. 01. 007 2. Baldassari, C.: Modélisation et simulation numérique pour la migration terrestre par équation d’ondes. Theses, Université de Pau et des Pays de l’Adour (2009). https:// theses. hal. scien ce/ tel- 00472 810 3. Bergmann, M., Carlino, M.G., Iollo, A.: Second order ADER scheme for unsteady advection-diffusion on moving overset grids with a compact transmission condition. SIAM J. Sci. Comput. 44(1), 524–553 (2022). https:// doi. org/ 10. 1137/ 21M13 93911 4. Bergmann, M., Carlino, M.G., Iollo, A., Telib, H.: ADER scheme for incompressible Navier-Stokes equations on overset grids with a compact transmission condition. J. Comput. Phys. 467, 111414 (2022). https:// doi. org/ 10. 1016/j. jcp. 2022. 111414 5. Bergmann, M., Fondanèche, A., Iollo, A.: An Eulerian finite-volume approach of fluid-structure interaction problems on quadtree meshes. J. Comput. Phys. 471, 111647 (2022). https:// doi. org/ 10. 1016/j. jcp. 2022. 111647 6. Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. J. Comput. Phys. 346, 449– 479 (2017). https:// doi. org/ 10. 1016/j. jcp. 2017. 06. 022 7. Boscheri, W., Loubère, R.: High order accurate direct arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for non-conservative hyperbolic systems with stiff source terms. Commun. Comput. Phys. 21(1), 271–312 (2017). https:// doi. org/ 10. 4208/ cicp. OA- 2015- 0024 8. Busto, S., Dumbser, M., Escalante, C., Favrie, N., Gavrilyuk, S.: On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems. J. Sci. Comput. 87(2), 48 (2021). https:// doi. org/ 10. 1007/ s10915- 021- 01429-8 9. Busto, S., Toro, E.F., Vázquez-Cendón, M.E.: Design and analysis of ADER-type schemes for model advection-diffusion-reaction equations. J. Comput. Phys. 327, 553–575 (2016). https:// doi. org/ 10. 1016/j. jcp. 2016. 09. 043 10. Cockburn, B.: Discontinuous Galerkin methods. ZAMM 83(11), 731–754 (2003). https:// doi. org/ 10. 1002/ zamm. 20031 0088 11. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000). https:// doi. org/ 10. 1007/ 978-3- 642- 59721-3 12. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001) 13. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008). https:// doi. org/ 10. 1016/j. jcp. 2008. 05. 025 14. Dumbser, M., Fambri, F., Tavelli, M., Bader, M., Weinzierl, T.: Efficient implementation of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE engine. Axioms 7(3), 63 (2018). https:// doi. org/ 10. 3390/ axiom s7030 063 15. Dumbser, M., Munz, C.-D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1/2/3), 215–230 (2006). https:// doi. org/ 10. 1007/ s10915- 005- 9025-0 16. Fambri, F.: Discontinuous Galerkin methods for compressible and incompressible flows on space-time adaptive meshes: toward a novel family of efficient numerical methods for fluid dynamics. Arch. Comput. Methods Eng. 27(1), 199–283 (2020). https:// doi. org/ 10. 1007/ s11831- 018- 09308-6 17. Fambri, F., Dumbser, M.: Semi-implicit discontinuous Galerkin methods for the incompressible Navier-Stokes equations on adaptive staggered Cartesian grids. Comput. Methods Appl. Mech. Eng. 324, 170–203 (2017). https:// doi. org/ 10. 1016/j. cma. 2017. 06. 003 18. Fambri, F., Dumbser, M., Zanotti, O.: Space-time adaptive ADER-DG schemes for dissipative flows: compressible Navier-Stokes and resistive MHD equations. Comput. Phys. Commun. 220, 297–318 (2017). https:// doi. org/ 10. 1016/j. cpc. 2017. 08. 001 19. Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.-D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230(11), 4232–4247 (2011). https:// doi. org/ 10. 1016/j. jcp. 2010. 10. 024 20. Hartmann, R.: Numerical analysis of higher order discontinuous Galerkin finite element methods. In: VKI LS 2008-08: CFD-ADIGMA Course on very High Order Discretization Methods, Oct. 13–17 (2008). https:// elib. dlr. de/ 57074/1/ Har08b. pdf 21. Hidalgo, A., Dumbser, M.: ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations. J. Sci. Comput. 48(1/2/3), 173–189 (2011). https:// doi. org/ 10. 1007/ s10915- 010- 9426-6 22. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 675–698 (2009). https:// doi. org/ 10. 1137/ 08072 0255 23. Loubère, R., Dumbser, M., Diot, S.: A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun. Comput. Phys. 16(3), 718–763 (2014). https:// doi. org/ 10. 4208/ cicp. 181113. 14031 4a 24. Ricchiuto, M., Abgrall, R.: Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys. 229(16), 5653–5691 (2010). https:// doi. org/ 10. 1016/j. jcp. 2010. 04. 002 25. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics. SIAM, Philadelphia (2008) (OCLC: ocn226292048) 26. Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17, 609–618 (2002). https:// doi. org/ 10. 1023/A: 10151 26814 947 27. Toro, E.F., Montecinos, G.I.: Advection-diffusion-reaction equations: hyperbolization and high-order ADER discretizations. SIAM J. Sci. Comput. 36(5), 2423–2457 (2014). https:// doi. org/ 10. 1137/ 13093 7469 28. Zahran, Y.H.: Central ADER schemes for hyperbolic conservation laws. J. Math. Anal. Appl. 346(1), 120–140 (2008). https:// doi. org/ 10. 1016/j. jmaa. 2008. 05. 032 |