[1] ASGarD-Adaptive Sparse Grid Discretization. https://github.com/project-asgard/asgard. Accessed 18 Oct 2022 (2022) [2] Alpert, B.K.:A class of bases in L2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246-262 (1993) [3] Arnold, D.:An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742-760 (1982) [4] Atanasov, A.B., Schnetter, E.:Sparse grid discretizations based on a discontinuous Galerkin method. arXiv:1710.09356 (2017) [5] Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W., et al.:PETSc Users Manual, ANL-95/11-Revision 3.11 (2019). http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf [6] Bellman, R.:Adaptive Control Processes:a Guided Tour, vol. 4. Princeton University Press, Princeton (1961) [7] Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.:An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput. 55(3), 575-605 (2013) [8] Bungartz, H.-J., Griebel, M.:Sparse grids. Acta Numer. 13, 147-269 (2004) [9] Chen, A., Li, F., Cheng, Y.:An ultra-weak discontinuous Galerkin method for Schrödinger equation in one dimension. J. Sci. Comput. 78(2), 772-815 (2019) [10] Cheng, Y., Shu, C.-W.:A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699-730 (2008) [11] Chou, C.-S., Shu, C.-W., Xing, Y.:Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88-107 (2014) [12] Cockburn, B., Hou, S., Shu, C.-W.:The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV:the multidimensional case. Math. Comput. 54(190), 545-581 (1990) [13] D'Azevedo, E., Green, D.L., Mu, L.:Discontinuous Galerkin sparse grids methods for time domain Maxwell's equations. Comput. Phys. Commun. 256, 107412 (2020) [14] Garcke, J., Griebel, M.:Sparse Grids and Applications. Springer, Berlin (2013) [15] Gradinaru, V.:Fourier transform on sparse grids:code design and the time dependent Schrödinger equation. Computing 80(1), 1-22 (2007) [16] Griebel, M.:Sparse grids and related approximation schemes for higher dimensional problems. In:Proceedings of the Conference on Foundations of Computational Mathematics, Santander, Spain (2005) [17] Griebel, M., Hamaekers, J.:Sparse grids for the Schrödinger equation. ESAIM Math. Modell. Numer. Anal. 41(02), 215-247 (2007) [18] Guennebaud, G., Jacob, B., et al.:Eigen v3. http://eigen.tuxfamily.org (2010) [19] Guo, W., Cheng, Y.:A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations. SIAM J. Sci. Comput. 38(6), A3381-A3409 (2016) [20] Guo, W., Cheng, Y.:An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions. SIAM J. Sci. Comput. 39(6), A2962-A2992 (2017) [21] Guo, W., Huang, J., Tao, Z., Cheng, Y.:An adaptive sparse grid local discontinuous Galerkin method for Hamilton-Jacobi equations in high dimensions. J. Comput. Phys. 436, 110294 (2021) [22] Huang, J., Cheng, Y.:An adaptive multiresolution discontinuous Galerkin method with artificial viscosity for scalar hyperbolic conservation laws in multidimensions. SIAM J. Sci. Comput. 42(5), A2943-A2973 (2020) [23] Huang, J., Liu, Y., Guo, W., Tao, Z., Cheng, Y.:An adaptive multiresolution interior penalty discontinuous Galerkin method for wave equations in second order form. J. Sci. Comput. 85(1), 1-31 (2020) [24] Huang, J., Liu, Y., Liu, Y., Tao, Z., Cheng, Y.:A class of adaptive multiresolution ultra-weak discontinuous Galerkin methods for some nonlinear dispersive wave equations. SIAM J. Sci. Comput. 44(2), A745-A769 (2022) [25] Pareschi, L., Russo, G.:Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1), 129-155 (2005) [26] Pflüger, D.:Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut, München (2010) [27] Schwab, C., Süli, E., Todor, R.:Sparse finite element approximation of high-dimensional transport-dominated diffusion problems. ESAIM Math. Modell. Numer. Anal. 42(05), 777-819 (2008) [28] Shen, J., Wang, L.-L.:Sparse spectral approximations of high-dimensional problems based on hyperbolic cross. SIAM J. Numer. Anal. 48(3), 1087-1109 (2010) [29] Shen, J., Yu, H.:Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput. 32(6), 3228-3250 (2010) [30] Shu, C.-W., Osher, S.:Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439-471 (1988) [31] Tao, Z., Huang, J., Liu, Y., Guo, W., Cheng, Y.:An adaptive multiresolution ultra-weak discontinuous Galerkin method for nonlinear Schrödinger equations. Commun. Appl. Math. Comput. 4(1), 60-83 (2022) [32] Tao, Z., Jiang, Y., Cheng, Y.:An adaptive high-order piecewise polynomial based sparse grid collocation method with applications. J. Comput. Phys. 433, 109770 (2021) [33] Wang, Z., Tang, Q., Guo, W., Cheng, Y.:Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations. J. Comput. Phys. 314, 244-263 (2016) [34] Wanner, G., Hairer, E.:Solving Ordinary Differential Equations I, vol. 375. Springer, Berlin (1996) [35] Yan, J., Osher, S.:A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations. J. Comput. Phys. 230(1), 232-244 (2011) [36] Zenger, C.:Sparse grids. In:Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, vol. 31 (1990) |