[1] Akrivis, G., Crouzeix, M., Makridakis, C.:Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67(222), 457-477 (1998) [2] Akrivis, G., Crouzeix, M., Makridakis, C.:Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521-541 (1999) [3] Ascher, U.M., Ruuth, S.J., Wetton, B.T.:Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797-823 (1995) [4] Ascher, U.M., Ruuth, S.J., Spiteri, R.J.:Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2/3), 151-167 (1997) [5] Bassi, F., Rebay, S.:A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131(2), 267-279 (1997) [6] Bona, J.L., Chen, H., Karakashian, O.A., Xing, Y.:Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation. Math. Comp. 82, 1401-1432 (2013) [7] Boscarino, S., Pareschi, L., Russo, G.:Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22-A51 (2013) [8] Calvo, M., De Frutos, J., Novo, J.:Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations. Appl. Numer. Math. 37(4), 535-549 (2001) [9] Cheng, Y., Chou, C.-S., Li, F., Xing, Y.:L2 stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comp. 86(303), 121-155 (2017) [10] Chuenjarern, N., Yang, Y.:Fourier analysis of local discontinuous Galerkin methods for linear parabolic equations on overlapping meshes. J. Sci. Comput. 81, 671-688 (2019) [11] Cockburn, B., Shu, C.-W.:The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440-2463 (1998) [12] Cockburn, B., Shu, C.-W.:Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173-261 (2001) [13] Dehghan, M., Abbaszadeh, M.:Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion. Comput. Methods Appl. Mech. Engrg. 300, 770-797 (2016) [14] Deng, W., Hesthaven, J.S.:Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 47(6), 1845-1864 (2013) [15] Dutykh, D., Katsaounis, T., Mitsotakis, D.:Finite volume methods for unidirectional dispersive wave models. Internat J. Numer. Methods Fluids 71(6), 717-736 (2013) [16] Frean, D.J., Ryan, J.K.:Superconvergence and the numerical flux:a study using the upwind-biased flux in discontinuous Galerkin methods. Commun. Appl. Math. Comp. 2(3), 461-486 (2020) [17] Gottlieb, S., Grant, Z.J., Hu, J., Shu, R.:High order strong stability preserving multiderivative implicit and IMEX Runge-Kutta methods with asymptotic preserving properties. SIAM J. Numer. Anal. 60(1), 423-449 (2022) [18] Guo, W., Zhong, X., Qiu, J.-M.:Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods:eigen-structure analysis based on Fourier approach. J. Comput. Phys. 235, 458-485 (2013) [19] Hairer, E., Wanner, G.:Stability function of implicit RK-methods. In:Hairer, E., Wanner, G. (eds) Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, pp. 40-50. Springer Berlin, Heidelberg (1996) [20] Hufford, C., Xing, Y.:Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg-de Vries equation. J. Comput. Appl. Math. 255, 441-455 (2014) [21] Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.:Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225(2), 1753-1781 (2007) [22] Li, X., Xing, Y., Chou, C.-S.:Optimal energy conserving and energy dissipative local discontinuous Galerkin methods for the Benjamin-Bona-Mahony equation. J. Sci. Comput. 83, 17 (2020) [23] Li, Y., Shu, C.-W., Tang, S.:A local discontinuous Galerkin method for nonlinear parabolic SPDEs. ESAIM Math. Model. Numer. Anal. 55, S187-S223 (2021) [24] Pareschi, L., Russo, G.:Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129-155 (2005) [25] Sun, J., Xie, S., Xing, Y.:Local discontinuous Galerkin methods for the nonlinear abcd-Boussinesq system. Commun. Appl. Math. Comp. 4(2), 381-416 (2022) [26] Sun, Z., Shu, C.-W.:Strong stability of explicit Runge-Kutta time discretizations. SIAM J. Numer. Anal. 57(3), 1158-1182 (2019) [27] Sun, Z., Xing, Y.:On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations:energy conservation and multi-symplecticity. J. Comput. Phys. 419, 109662 (2020) [28] Tan, M., Cheng, J., Shu, C.-W.:Stability of high order finite difference schemes with implicit-explicit time-marching for convection-diffusion and convection-dispersion equations. Int. J. Numer. Anal. Model. 18(3), 362-383 (2021) [29] Tan, M., Cheng, J., Shu, C.-W.:Stability of high order finite difference and local discontinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations. J. Comput. Phys. 464, 111314 (2022) [30] Tian, L., Xu, Y., Kuerten, J.G., van der Vegt, J.J.:An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations. J. Comput. Phys. 319, 242-265 (2016) [31] Wang, H., Shu, C.-W., Zhang, Q.:Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53(1), 206-227 (2015) [32] Xu, Y., Shu, C.-W.:Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7(1), 1-46 (2010) [33] Yan, J., Shu, C.-W.:A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769-791 (2002) [34] Yang, H., Li, F., Qiu, J.:Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput. 55(3), 552-574 (2013) [35] Zhang, M., Shu, C.-W.:An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13(03), 395-413 (2003) [36] Zhong, X., Shu, C.-W. Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Comput. Methods Appl. Mech. Engrg. 200(41/42/43/44), 2814-2827 (2011) |