Communications on Applied Mathematics and Computation ›› 2021, Vol. 3 ›› Issue (3): 429-444.doi: 10.1007/s42967-020-00081-7
Leilei Wei1, Shuying Zhai2, Xindong Zhang3
收稿日期:
2020-03-06
修回日期:
2020-05-13
出版日期:
2021-09-20
发布日期:
2021-09-16
通讯作者:
Leilei Wei
E-mail:leileiwei09@gmail.com,leileiwei@haut.edu.cn
基金资助:
Leilei Wei1, Shuying Zhai2, Xindong Zhang3
Received:
2020-03-06
Revised:
2020-05-13
Online:
2021-09-20
Published:
2021-09-16
Contact:
Leilei Wei
E-mail:leileiwei09@gmail.com,leileiwei@haut.edu.cn
Supported by:
摘要: The aim of this paper is to develop a fully discrete local discontinuous Galerkin method to solve a class of variable-order fractional diffusion problems. The scheme is discretized by a weighted-shifted Grünwald formula in the temporal discretization and a local discontinuous Galerkin method in the spatial direction. The stability and the L2-convergence of the scheme are proved for all variable-order α(t) ∈ (0, 1). The proposed method is of accuracy-order O(τ3 + hk+1), where τ, h, and k are the temporal step size, the spatial step size, and the degree of piecewise Pk polynomials, respectively. Some numerical tests are provided to illustrate the accuracy and the capability of the scheme.
中图分类号:
Leilei Wei, Shuying Zhai, Xindong Zhang. Error Estimate of a Fully Discrete Local Discontinuous Galerkin Method for Variable-Order Time-Fractional Diffusion Equations[J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 429-444.
Leilei Wei, Shuying Zhai, Xindong Zhang. Error Estimate of a Fully Discrete Local Discontinuous Galerkin Method for Variable-Order Time-Fractional Diffusion Equations[J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 429-444.
1. Almeida, R., Tavares, D., Torres, D.:The Variable-Order Fractional Calculus of Variations. Springer, Berlin (2019) 2. Baleanu, D., Machado, J., Luo, A.:Fractional Dynamics and Control. Springer Science & Business Media, Berlin (2011) 3. Burrage, K., Cardone, A., Ambrosio, R., Paternoster, B.:Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82-94 (2017) 4. Baeumer, B., Kovacs, M., Meerschaert, M.:Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 55, 2212-2226 (2008) 5. Bhrawy, A., Zaky, M.:Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101-116 (2015) 6. Chen, H., Lü, S., Chen, W.:Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain. J. Comput. Phys. 315, 84-97 (2016) 7. Chen, C., Liu, F., Burrage, K.:Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 198, 754-769 (2008) 8. Coimbra, C.:Mechanics with variable-order differential operators. Ann. Phys. 12, 692-703 (2003) 9. Cui, M.:Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621-2633 (2012) 10. Chen, C., Liu, F., Anh, V., Turner, I.:Numerical schemes with high spatial accuracy for a variableorder anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740-1760 (2010) 11. Cao, J., Qiu, Y., Song, G.:A compact finite difference scheme for variable order subdiffusion equation. Commun. Nonlinear Sci. Numer. Simul. 48, 140-149 (2017) 12. Dabiri, A., Moghaddam, B., Machado, J.A.T.:Optimal variable-order fractional PID controllers for dynamical systems. J. Comput. Appl. Math. 339, 40-48 (2018) 13. Deng, W., Hesthaven, J.S.:Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 47, 1845-1864 (2013) 14. Du, Y., Liu, Y., Li, H., Fang, Z., He, S.:Local discontinuous Galerkin method for a nonlinear timefractional fourth-order partial differential equation. J. Comput. Phys. 344, 108-126 (2017) 15. Evans, K.P., Jacob, N.:Feller semigroups obtained by variable order subordination. (2006). arXiv:math/06080 56 16. Guo, L., Wang, Z., Vong, S.:Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems. Int. J. Comput. Math. 93(10), 1665-1682 (2016) 17. Haq, S., Ghafoor, A., Hussain, M.:Numerical solutions of variable order time fractional (1 + 1)-and (1 + 2)-dimensional advection dispersion and diffusion models. Appl. Math. Comput. 360, 107-121 (2019) 18. Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.:On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 69, 119-133 (2019) 19. Jiang, Y., Ma, J.:High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285-3290 (2011) 20. Jiang, W., Liu, N.:A numerical method for solving the time variable fractional order mobile-immobile advection dispersion model. Appl. Numer. Math. 119, 18-32 (2017) 21. Ji, C., Sun, Z.:A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959-985 (2015) 22. Li, C., Deng, W., Zhao, L.:Well-posedness and numerical algorithm for the tempered fractional differential equations. Discret. Contin. Dyn. Syst. Ser. B 24, 1989-2015 (2019) 23. Li, C., Wang, Z.:The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law. Math. Comput. Simul. 169, 51-73 (2020) 24. Li, C., Wang, Z.:The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations:mathematical analysis. Appl. Numer. Math. 150, 587-606 (2020) 25. Li, M., Gu, X., Huang, C., Fei, M., Zhang, G.:A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256-282 (2018) 26. Lin, R., Liu, F., Anh, V., Turner, I.:Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435-445 (2009) 27. Moghaddam, B., Machado, J.:Extended algorithms for approximating variable order fractional derivatives with applications. J. Sci. Comput. 71, 1351-1374 (2017) 28. Holte, J.M.:Discrete Gronwall lemma and applications. In:MAA-NCS Meeting at the University of North Dakota (2009) 29. Liu, Y., Yan, Y., Khan, M.:Discontinuous Galerkin time stepping method for solving linear space fractional partial differential equations. Appl. Numer. Math. 115, 200-213 (2017) 30. Liu, Y., Zhang, M., Li, H., Li, J.:High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput. Math. Appl. 73(6), 1298-1314 (2017) 31. Lorenzo, C., Hartley, T.:Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57-98 (2002) 32. Mustapha, K., McLean, W.:Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491-515 (2013) 33. Podlubny, I.:Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999) 34. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.:Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861-10870 (2012) 35. Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.:A comparative study of constant-order and variableorder fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185-192 (2011) 36. Sun, Z.Z., Wu, X.:A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193-209 (2006) 37. Tavares, D., Almeida, R., Torres, D.:Caputo derivatives of fractional variable order:numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 35, 69-87 (2016) 38. Tarasov, V.:Partial fractional derivatives of Riesz type and nonlinear fractional differential equations. Nonlinear Dyn. 86, 1745-1759 (2016) 39. Wang, H., Zheng, X.:Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778-1802 (2019) 40. Wang, H., Zheng, X.:Analysis and numerical solution of a nonlinear variable-order fractional differential equation. Adv. Comput. Math. (2019). https://doi.org/10.1007/s10444-019-09690-0 41. Wei, L.L., He, Y.N.:Analysis of a fully discrete local discontinuous Galerkin method for timefractional fourth-order problems. Appl. Math. Model. 38, 1511-1522 (2014) 42. Wei, L.L.:Analysis of a new finite difference/local discontinuous Galerkin method for the fractional diffusion-wave equation. Appl. Math. Comput. 304, 180-189 (2017) 43. Wei, L.L.:Stability and convergence of a fully discrete local discontinuous Galerkin method for multi-term time fractional diffusion equations. Numer. Algorithms 76, 695-707 (2017) 44. Xu, Q.W., Hesthaven, J.S.:Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52, 405-423 (2014) 45. Xu, Y., Shu, C.-W.:Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79-104 (2012) 46. Yang, J., Yao, H., Wu, B.:An efficient numerical method for variable order fractional functional differential equation. Appl. Math. Lett. 76, 221-226 (2018) 47. Yaseen, M., Abbas, M., Nazir, T., Baleanu, D.:A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation. Adv. Differ. Equ. 2017, 274 (2017). https://doi.org/10.1186/s13662-017-1330-z 48. Yu, B., Jiang, X.Y.:Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J. Sci. Comput. 68(1), 252-272 (2016) 49. Zayernouri, M., Karniadakis, G.:Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312-338 (2015) 50. Zeng, F., Zhang, Z., Karniadakis, G.:A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710-A2732 (2015) 51. Zhai, S., Weng, Z., Feng, X.:Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model. Appl. Math. Model. 40, 1315-1324 (2016) 52. Zhang, M., Liu, Y., Li, H.:High-order local discontinuous Galerkin algorithm with time second-order schemes for the two-dimensional nonlinear fractional diffusion equation. Commun. Appl. Math. Comput. (2020). https://doi.org/10.1007/s42967-019-00058-1 53. Zhang, Q., Shu, C.-W.:Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM. J. Numer. Anal. 48, 1038-1063 (2010) 54. Zhang, Q., Shu, C.-W.:Error estimate for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation with discontinuous initial solution. Numer. Math. 126, 703-740 (2014) 55. Zhang, H., Liu, F., Jiang, X., Zeng, F., Turner, I.:A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comput. Math. Appl. 76(10), 2460-2476 (2018) 56. Zhao, Y.M., Zhang, Y., Liu, F., Turner, I., Tang, Y., Anh, V.:Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Comput. Math. Appl. 73, 1087-1099 (2017) 57. Zhao, L., Deng, W.:A series of high-order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. Numer. Methods Partial. Differ. Equ. 31, 1345-1381 (2015) 58. Zheng, M., Liu, F., Turner, I., Anh, V.:A novel high order space-time spectral method for the timefractional Fokker-Planck equation. SIAM J. Sci. Comput. 37(2), A701-A724 (2015) 59. Zheng, Y.Y., Zhao, Z.G.:The discontinuous Galerkin finite element method for fractional cable equation. Appl. Numer. Math. 115, 32-41 (2017) 60. Zhuang, P., Liu, F., Anh, V., Turner, I.:Numerical methods for the variable-order fractional advectiondiffusion equation with a nonlinear source term. SIAM. J. Numer. Anal. 47, 1760-1781 (2009) |
[1] | Oleksii Beznosov, Daniel Appel?. Hermite-Discontinuous Galerkin Overset Grid Methods for the Scalar Wave Equation[J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 391-418. |
[2] | Le Zhao, Can Li, Fengqun Zhao. Efficient Difference Schemes for the Caputo-Tempered Fractional Diffusion Equations Based on Polynomial Interpolation[J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 1-40. |
[3] | Wenhui Guan, Xuenian Cao. A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation[J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 41-59. |
[4] | Jayesh Badwaik, Praveen Chandrashekar, Christian Klingenberg. Single-Step Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for 1-D Euler Equations[J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 541-579. |
[5] | Min Zhang, Yang Liu, Hong Li. High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Difusion Equation[J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 613-640. |
[6] | Mostafa Abbaszadeh, Hanieh Amjadian. Second-Order Finite Diference/Spectral Element Formulation for Solving the Fractional Advection-Difusion Equation[J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 653-669. |
[7] | Somayeh Yeganeh, Reza Mokhtari, Jan S. Hesthaven. A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Difusion Equations[J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 689-709. |
[8] | Xue-lei Lin, Pin Lyu, Michael K. Ng, Hai-Wei Sun, Seakweng Vong. An Efcient Second-Order Convergent Scheme for One-Side Space Fractional Difusion Equations with Variable Coefcients[J]. Communications on Applied Mathematics and Computation, 2020, 2(2): 215-239. |
[9] | Qiang Du, Lili Ju, Jianfang Lu, Xiaochuan Tian. A Discontinuous Galerkin Method with Penalty for One-Dimensional Nonlocal Difusion Problems[J]. Communications on Applied Mathematics and Computation, 2020, 2(1): 31-55. |
[10] | Can Li, Shuming Liu. Local Discontinuous Galerkin Scheme for Space Fractional Allen-Cahn Equation[J]. Communications on Applied Mathematics and Computation, 2020, 2(1): 73-91. |
[11] | Yanyong Wang, Yubin Yan, Ye Hu. Numerical Methods for Solving Space Fractional Partial Differential Equations Using Hadamard Finite-Part Integral Approach[J]. Communications on Applied Mathematics and Computation, 2019, 1(4): 505-523. |
[12] | Yubo Yang, Fanhai Zeng. Numerical Analysis of Linear and Nonlinear Time-Fractional Subdiffusion Equations[J]. Communications on Applied Mathematics and Computation, 2019, 1(4): 621-637. |
[13] | Paola Antonietti, Claudio Canuto, Marco Verani. An Adaptive hp-DG-FE Method for Elliptic Problems: Convergence and Optimality in the 1D Case[J]. Communications on Applied Mathematics and Computation, 2019, 1(3): 309-331. |
[14] | Zachary Grant, Sigal Gottlieb, David C. Seal. A Strong Stability Preserving Analysis for Explicit Multistage Two-Derivative Time-Stepping Schemes Based on Taylor Series Conditions[J]. Communications on Applied Mathematics and Computation, 2019, 1(1): 21-59. |
[15] | Ying He, Jie Shen. Unconditionally Stable Pressure-Correction Schemes for a Nonlinear Fluid-Structure Interaction Model[J]. Communications on Applied Mathematics and Computation, 2019, 1(1): 61-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||