[1] Ahmadinia, M., Safari, Z., Fouladi, S.: Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations. BIT 58(3), 533-554 (2018) [2] Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424-438 (2015) [3] Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comp. 71, 455-478 (2002) [4] Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79(1), 624-647 (2019) [5] Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264-285 (2001) [6] Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440-2463 (1998) [7] Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240-3268 (2009) [8] Huang, C.B., Stynes, M.: Optimal spatial H1-norm analysis of a finite element method for a time-fractional diffusion equation. J. Comput. Appl. Math. 367, 112435 (2020) [9] Huang, C.B., Stynes, M.: a-Robust error analysis of a mixed finite element method for a time-fractional biharmonic equation. Numer. Algorithms 87(4), 1749-1766 (2021) [10] Jin, B., Li, B.Y., Zhou, Z.: Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math. Comp. 88, 2157-2186 (2019) [11] Li, C.P., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM, Philadelphia (2019) [12] Li, C.P., Li, D.X., Wang, Z.: L1/LDG method for the generalized time-fractional Burgers equation. Math. Comput. Simulation 187, 357-378 (2021) [13] Li, C.P., Li, D.X., Wang, Z.: L1/LDG method for the generalized time-fractional Burgers equation in two spatial dimensions. Commun. Appl. Math. Comput. (2022). https://doi.org/10.1007/s42967-022-00199-w [14] Li, C.P., Li, D.X., Wang, Z.: CDG method for the fractional convection equation. In: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), Ajman, United Arab Emirates, pp. 1-6. IEEE (2023) https://doi.org/10.1109/ICFDA58234.2023.10153229 [15] Li, C.P., Li, Z.Q., Wang, Z.: Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. J. Sci. Comput. 85(2), 1-27 (2020) [16] Li, C.P., Wang, Z.: Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution. Math. Comput. Simulation 182, 838-857 (2021) [17] Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112-1133 (2018) [18] Liao, H.L., McLean, W., Zhang, J.W.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218-237 (2019) [19] Liao, H.L., McLean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. Commun. Comput. Phys. 30(2), 567-601 (2021) [20] Mustapha, K.: An L1 approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded meshes. SIAM J. Numer. Anal. 58(2), 1319-1338 (2020) [21] Mustapha, K., Abdallah, B., Furati, K.M., Nour, M.: A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients. Numer. Algorithms 73(2), 517-534 (2016) [22] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) [23] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) [24] Ren, J.C., Liao, H.L., Zhang, J.W., Zhang, Z.M.: Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. J. Comput. Appl. Math. 389, 113352 (2021) [25] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993) [26] Stynes, M., ORiordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057-1079 (2017) [27] Wei, L.L., He, Y.N.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38(4), 1511-1522 (2014) [28] Zeng, Y.H., Tan, Z.J.: Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations. Appl. Math. Comput. 434(127408), 16 (2022) |