[1] Achouri, T., Kadri, T., Omrani, K.: Analysis of finite difference schemes for a fourth-order strongly damped nonlinear wave equations. Comput. Math. Appl. 82, 74-96 (2021) [2] Adams, R., Fournier, J.: Sobolev Spaces. Academic Press, Amsterdam (2003) [3] Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31-53 (1991) [4] An, R.: Optimal error estimates of linearized Crank-Nicolson Galerkin method for Landau-Lifshitz equation. J. Sci. Comput. 69, 1-27 (2016) [5] Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13, 564-576 (1976) [6] Cao, W.X., Li, D.F., Zhang, Z.M.: Optimal superconvergence of energy conserving local discontinuous Galerkin methods for wave equations, Commun. Comput. Phys. 21, 211-236 (2017) [7] Cao, W.X., Li, D.F., Zhang, Z.M.: Unconditionally optimal convergence of an energy-conserving and linearly implicit scheme for nonlinear wave equations. Sci. China Math. 64, 1-18 (2021) [8] Chen, L., Chen, Y.: Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods. J. Sci. Comput. 49, 383-401 (2011) [9] Dodd, R.K., Eilbeck, I.C., Morris, J.D., Gibbon, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, London, New York (1982) [10] Egger, H., Radu, B.: Super-convergence and post-processing for mixed finite element approximations of the wave equation. Numer. Math. 140, 427-447 (2018) [11] Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134(1/2), 37-57 (2001) [12] Gao, H.D.: Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation. SIAM J. Numer. Anal. 52, 2574-2593 (2014) [13] Garcia, M.: Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the continuously-time case. Numer. Methods Partial Differential Equations 10, 129-149 (1994) [14] Garcia, M.: Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the discrete-time case. Numer. Methods Partial Differential Equations 10, 149-169 (1994) [15] Gao, H.D., Qiu, W.F.: Error analysis of mixed finite element methods for nonlinear parabolic equations. J. Sci. Comput. 77, 1660-1678 (2018) [16] Grote, M.J., Schneebeli, A., Schotzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408-2431 (2006) [17] Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353-384 (1990) [18] Kim, D., Park, E., Seo, B.: Two-scale product approximation for semilinear parabolic problems in mixed methods. J. Korean Math. Soc. 51, 267-288 (2014) [19] Li, B.Y., Gao, H.D., Sun, W.W.: Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 53, 933-954 (2014) [20] Li, B.Y., Sun, W.W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622-633 (2013) [21] Li, B.Y., Sun, W.W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J. Numer. Anal. 51, 1959-1977 (2013) [22] Li, D.F., Wang, J.L.: Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72, 892-915 (2017) [23] Li, D.F., Wang, J.L., Zhang, J.W.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time fractional Schrödinger equations. SIAM. J. Sci. Comput. 39, A3067-A3088 (2017) [24] Li, D.F., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput. 76, 848-866 (2018) [25] Lin, Q., Lin, J.F.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006) [26] Pani, A.K., Sinha, R.K., Otta, A.K.: An-Galerkin mixed methods for second order hyperbolic equations. Int. J. Numer. Anal. Model. 1(2), 111-129 (2004) [27] Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895-2912 (2018) [28] Shi, D.Y., Wang, J.J.: Unconditional Superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schrödinger equation. J. Sci. Comput. 72, 1093-1118 (2017) [29] Shi, D.Y., Wang, P.L., Zhao, Y.M.: Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl. Math. Lett. 38, 129-134 (2014) [30] Shi, D.Y., Yang, H.J.: Unconditionally optimal error estimates of a new mixed FEM for nonlinear Schrödinger equations. Adv. Comput. Math. 45, 3173-3194 (2019) [31] Talha, A.: Conservative finite difference scheme for the nonlinear fourth-order wave equation. Appl. Math. Comput. 359, 121-131 (2019) [32] Tourigny, Y.: Optimal estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509-523 (1991) [33] Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin, Heidelberg (2006) [34] Wang, J.L.: A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60(2), 390-407 (2014) [35] Wang, K.Y., Chen, Y.P.: Two-grid mixed finite element method for nonlinear hyperbolic equations. Comput. Math. Appl. 74(6), 1489-1505 (2017) [36] Wang, K.Y., Wang, Q.S.: Expanded mixed finite element method for second order hyperbolic equations. Comput. Math. Appl. 78(8), 2560-2574 (2019) [37] Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein-Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889-901 (2008) [38] Wu, L., Allen, M.: A two-grid method for mixed finite-element solution of reaction-diffusion equations. Numer. Methods Partial Differential Equations 15, 317-332 (1999) [39] Xu, C., Pei, L.F.: Unconditional superconvergence analysis of two modified finite element fully discrete schemes for nonlinear Burgers’ equation. Appl. Numer. Math. 185, 1-17 (2023) |