[1] Allaneau, Y., Jameson, A.: Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations. Comput. Methods Appl. Mech. Eng. 200(49), 3628-3636 (2011) [2] Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742-760 (1982) [3] Arnold, D., Brezzi, F., Cockburn, B., Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749-1779 (2002) [4] Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2), 151-167 (1997) [5] Ascher, U.M., Ruuth, S.J., Wetton, B.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797-823 (1995) [6] Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267-279 (1997) [7] Bassi, F., Rebay, S.: GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods, pp. 197-208. Springer, Berlin, Heidelberg (2000) [8] Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311-341 (1999) [9] Calvo, M.P., Frutos, J., Novo, J.: Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations. Appl. Numer. Math. 37(4), 535-549 (2001) [10] Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220-236 (1994). https://doi.org/10.1006/jcph.1994.1057 [11] Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440-2463 (1998) [12] Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173-261 (2001) [13] Fisher, T., Carpenter, M., Nordström, J., Yamaleev, N., Swanson, R.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353-375 (2013). https://doi.org/10.1016/j.jcp.2012.09.026 [14] Fu, G., Shu, C.-W.: Analysis of an embedded discontinuous Galerkin method with implicit-explicit time-marching for convection-diffusion problems. Int. J. Numer. Anal. Model. 14, 477-499 (2017) [15] Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35, 1233-1253 (2013) [16] Gassner, G.J.: A kinetic energy preserving nodal discontinuous Galerkin spectral element method. Int. J. Numer. Meth. Fluids 76, 28-50 (2014) [17] Gassner, G.J., Winters, A.R., Hindenlang, F.J., Kopriva, D.A.: The BR1 scheme is stable for the compressible Navier-Stokes equations. J. Sci. Comput. 77, 154-200 (2018) [18] Hicken, J.E., Rey Fernández Del, D.C., Zingg, D.W.: Multidimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), 1935-1958 (2016). https://doi.org/10.1137/15M1038360 [19] Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: Boor, C.D. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195-212. Academic Press, New York (1974). https://doi.org/10.1016/B978-0-12-208350-1.50012-1 [20] Leer, B., Lo, M., Gitik, R., Nomura, S.: A venerable family of discontinuous Galerkin schemes for diffusion revisited. In: Wang, Z.J. (ed.) Adaptive High-Order Methods in Computational Fluid Dynamics, pp. 185-201. World Scientific, Singapore (2011) [21] Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: 17th AIAA Computational Fluid Dynamics Conference. AIAA-2005-5108 (2005) [22] Lundgren, L., Mattsson, K.: An efficient finite difference method for the shallow water equations. J. Comput. Phys. 422, 109784 (2020). https://doi.org/10.1016/j.jcp.2020.109784 [23] Mattsson, K.: Diagonal-norm upwind SBP operators. J. Comput. Phys. 335, 283-310 (2017). https://doi.org/10.1016/j.jcp.2017.01.042 [24] Nordström, J., Forsberg, K., Adamsson, C., Eliasson, P.: Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45, 453-473 (2003). https://doi.org/10.1016/S0168-9274(02)00239-8 [25] Nordström, J., Gong, J., Weide, E., Svärd, M.: A stable and conservative high order multi-block method for the compressible Navier-Stokes equations. J. Comput. Phys. 228(24), 9020-9035 (2009). https://doi.org/10.1016/j.jcp.2009.09.005 [26] Ortleb, S.: A kinetic energy preserving DG scheme based on Gauss-Legendre points. J. Sci. Comput. 71, 1135-1168 (2017). https://doi.org/10.1007/s10915-016-0334-2 [27] Ortleb, S.: L2-stability analysis of IMEX-DG schemes for linear advection-diffusion equations. Appl. Numer. Math. 147, 43-65 (2020). https://doi.org/10.1016/j.apnum.2019.08.016 [28] Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299-328 (2016). https://doi.org/10.1016/j.jcp.2016.02.009 [29] Rey Fernández Del, D.C., Boom, P.D., Carpenter, M.H., Zingg, D.W.: Extension of tensor-product generalized and dense-norm summation-by-parts operators to curvilinear coordinates. J. Sci. Comput. 80(4), 1957-1996 (2019). https://doi.org/10.1007/s10915-019-01011-3 [30] Rey Fernández Del, D.C., Boom, P.D., Zingg, D.W.: A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266, 214-239 (2014). https://doi.org/10.1016/j.jcp.2014.01.038 [31] Rey Fernández Del, D.C., Hicken, J., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171-196 (2014). https://doi.org/10.1016/j.compfluid.2014.02.016 [32] Rosales, R.R., Seibold, B., Shirokoff, D., Zhou, D.: Unconditional stability for multistep ImEx schemes: theory. SIAM J. Numer. Anal. 55(5), 2336-2360 (2017) [33] Seibold, B., Shirokoff, D., Zhou, D.: Unconditional stability for multistep ImEx schemes: practice. J. Comput. Phys. 376, 295-321 (2019) [34] Stiernström, V., Lundgren, L., Nazarov, M., Mattsson, K.: A residual-based artificial viscosity finite difference method for scalar conservation laws. J. Comput. Phys. 430, 110100 (2021). https://doi.org/10.1016/j.jcp.2020.110100 [35] Strand, B.: Summation by parts for finite difference approximations for . J. Comput. Phys. 110(1), 47-67 (1994). https://doi.org/10.1006/jcph.1994.1005 [36] Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17-38 (2014). https://doi.org/10.1016/j.jcp.2014.02.031 [37] Verwer, J.G., Blom, J.G., Hundsdorfer, W.: An implicit-explicit approach for atmospheric transport-chemistry problems. Appl. Numer. Math. 20(1), 191-209 (1996) [38] Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53(1), 206-227 (2015) [39] Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272, 237-258 (2016) [40] Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems. ESAIM: M2AN 50(4), 1083-1105 (2016) [41] Wang, H., Zhang, Q.: The direct discontinuous Galerkin methods with implicit-explicit Runge-Kutta time marching for linear convection-difusion problems. Commun. Appl. Math. Comput. 4, 271-292 (2022) |