[1] Aceto, L., Novati, P.: Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput. 39, A214-A228 (2017) [2] Ainsworth, M., Mao, Z.P.: Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos Solitons Fractals 102, 264-273 (2017) [3] Ainsworth, M., Mao, Z.P.: Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55, 1689-1718 (2017) [4] Akagi, G., Schimperna, G., Segatti, A.: Fractional Cahn-Hilliard, and porous medium equations. J. Differential Equations 261, 2935-2985 (2016) [5] Akagi, G., Schimperna, G., Segatti, A.: Convergence of solutions for the fractional Cahn-Hilliard system. J. Funct. Anal. 276, 2663-2715 (2019) [6] Akrivis, G., Li, B.Y., Li, D.F.: Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations. SIAM J. Sci. Comput. 41, A3703-A3727 (2019) [7] Bertozzi, A.L., Esedo?lu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16, 285-291 (2007) [8] Borthagaray, J.P., Leykekhman, D., Nochetto, R.H.: Local energy estimates for the fractional Laplacian. SIAM J. Numer. Anal. 59, 1918-1947 (2021) [9] Bosch, J., Stoll, M.: A fractional inpainting model based on the vector-valued Cahn-Hilliard equation. SIAM J. Imaging Sci. 8, 2352-2382 (2015) [10] Bu, L.L., Mei, L.Q., Wang, Y., Hou, Y.: Energy stable numerical schemes for the fractional-in-space Cahn-Hilliard equation. Appl. Numer. Math. 158, 392-414 (2020) [11] Bu, L.L., Wu, J.H., Mei, L.Q., Wang, Y.: Second-order linear adaptive time-stepping schemes for the fractional equation. Comput. Math. Appl. 145, 260-274 (2023) [12] Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258-267 (1958) [13] Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67-86 (1982) [14] Chen, W.B., Wang, X.M., Yan, Y., Zhang, Z.Y.: A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation. SIAM J. Numer. Anal. 57, 495-525 (2019) [15] Cheng, K.L., Feng, W.Q., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. J. Comput. Appl. Math. 362, 574-595 (2019) [16] Cheng, K.L., Wang, C., Wise, S.M., Yue, X.Y.: A second-order, weakly energy-stable pseudospectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69, 1083-1114 (2016) [17] Cristini, V., Li, X.R., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol. 58, 723-763 (2009) [18] Du, Q., Ju, L.L., Li, X., Qiao, Z.H.: Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation. J. Comput. Phys. 363, 39-54 (2018) [19] Faustmann, M., Karkulik, M., Melenk, J.M.: Local convergence of the FEM for the integral fractional Laplacian. SIAM J. Numer. Anal. 60, 1055-1082 (2022) [20] Feng, X.L., Tang, T., Yang, J.: Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods. SIAM J. Sci. Comput. 37, A271-A294 (2015) [21] Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69, 1671-1726 (2016) [22] Frohoff-Hülsmann, T., Wrembel, J., Thiele, U.: Suppression of coarsening and emergence of oscillatory behavior in a Cahn-Hilliard model with nonvariational coupling. Phys. Rev. E 103, 042602 (2021) [23] Golovin, A.A., Nepomnyashchy, A.A., Davis, S.H., Zaks, M.A.: Convective Cahn-Hilliard models: from coarsening to roughening. Phys. Rev. Lett. 86, 1550-1553 (2001) [24] Gomez, H., Hughes, T.J.R.: Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230, 5310-5327 (2011) [25] Guan, Z., Lowengrub, J., Wang, C.: Convergence analysis for second-order accurate schemes for the periodic nonlocal and Cahn-Hilliard equations. Math. Methods Appl. Sci. 40, 377-406 (2017) [26] Hosea, M.E., Shampine, L.F.: Analysis and implementation of TR-BDF2. Appl. Numer. Math. 20, 21-37 (1996) [27] Hou, T.L., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space equations. J. Sci. Comput. 72, 1214-1231 (2017) [28] Huang, J.Z., Yang, C., Wei, Y.: Parallel energy-stable solver for a coupled and Cahn-Hilliard system. SIAM J. Sci. Comput. 42, C294-C312 (2020) [29] Huang, X., Li, D.F., Sun, H.W.: Preconditioned SAV-leapfrog finite difference methods for spatial fractional Cahn-Hilliard equations. Appl. Math. Lett. 138, 108510 (2023) [30] Huang, X., Li, D.F., Sun, H.W., Zhang, F.: Preconditioners with symmetrized techniques for space fractional Cahn-Hilliard equations. J. Sci. Comput. 92, 41 (2022) [31] Huang, Y.H., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056-3084 (2014) [32] Khain, E., Sander, L.M.: Generalized Cahn-Hilliard equation for biological applications. Phys. Rev. E 77, 051129 (2008) [33] Li, D., Qiao, Z.H.: On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations. J. Sci. Comput. 70, 301-341 (2017) [34] Li, D., Quan, C.Y., Tang, T.: Stability and convergence analysis for the implicit-explicit method to the Cahn-Hilliard equation. Math. Comput. 91, 785-809 (2022) [35] Li, D.F., Li, X.X., Mei, M., Yuan, W.Q.: A structure-preserving and variable-step BDF2 Fourier pseudo-spectral method for the two-mode phase field crystal model. Math. Comput. Simul. 205, 483-506 (2023) [36] Liao, H.-L., Ji, B.Q., Wang, L., Zhang, Z.M.: Mesh-robustness of an energy stable BDF2 scheme with variable steps for the Cahn-Hilliard model. J. Sci. Comput. 92, 52 (2022) [37] Liao, H.-L., Zhang, Z.M.: Analysis of adaptive BDF2 scheme for diffusion equations. Math. Comput. 90, 1207-1226 (2021) [38] Lischkea, A., Pang, G.F., Guliana, M., Song, F.Y., Glusa, C., Zheng, X.N., Mao, Z.P., Cai, W., Meerschaert, M.M., Ainsworth, M., Em Karniadakis, G.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020) [39] Liu, H.L., Yin, P.M.: Unconditionally energy stable discontinuous Galerkin schemes for the Cahn-Hilliard equation. J. Comput. Appl. Math. 390, 113375 (2021) [40] Luo, F.S., Tang, T., Xie, H.H.: Parameter-free time adaptivity based on energy evolution for the Cahn-Hilliard equation. Commun. Comput. Phys. 19, 1542-1563 (2016) [41] Minden, V., Ying, L.: A simple solver for the fractional Laplacian in multiple dimensions. SIAM J. Sci. Comput. 42, A878-A900 (2020) [42] Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer-Verlag, Berlin Heidelberg (2011) [43] Shen, J., Yang, X.F.: Numerical approximations of and Cahn-Hilliard equations. Discret Contin. Dyn. Syst. 28, 1669-1691 (2010) [44] Song, F.Y., Xu, C.J., Em Karniadakis, G.: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Eng. 305, 376-404 (2016) [45] Tang, T., Wang, L.-L., Yuan, H.F., Zhou, T.: Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains. SIAM J. Sci. Comput. 42, A585-A611 (2020) [46] Tóth, G.I., Zarifi, M., Kvamme, B.: Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids. Phys. Rev. E 93, 013126 (2016) [47] Wang, F., Chen, H.Z., Wang, H.: Finite element simulation and efficient algorithm for fractional Cahn-Hilliard equation. J. Comput. Appl. Math. 356, 248-266 (2019) [48] Wei, Y.F., Zhang, J.W., Zhao, C.C., Zhao, Y.M.: A unconditionally energy dissipative, adaptive IMEX BDF2 scheme and its error estimates for Cahn-Hilliard equation on generalized SAV approach. arXiv:2212.02018v1 (2022) [49] Weng, Z.F., Zhai, S.Y., Feng, X.L.: A Fourier spectral method for fractional-in-space Cahn-Hilliard equation. Appl. Math. Model. 42, 462-477 (2017) [50] Xu, T., Wang, F.W., Lyu, S.J., Anh, V.V.: Numerical approximation of 2D multi-term time and space fractional Bloch-Torrey equations involving the fractional Laplacian. J. Comput. Appl. Math. 393, 113519 (2021) [51] Zhang, Z.J., Deng, W.H., Em Karniadakis, G.: A Riesz basis Galerkin method for the tempered fractional Laplacian. SIAM J. Numer. Anal. 56, 3010-3039 (2018) [52] Zhang, Z.R., Qiao, Z.H.: An adaptive time-stepping strategy for the Cahn-Hilliard equation. Commun. Comput. Phys. 11, 1261-1278 (2012) [53] Zhao, C.C., Yang, R.Y., Di, Y.N., Zhang, J.W.: Sharp error estimate of variable time-step IMEX BDF2 scheme for parabolic integro-differential equations with nonsmooth initial data arising in finance. arXiv:2201.09322v1 (2022) [54] Zhao, Y.-L., Li, M., Ostermann, A., Gu, X.-M.: An efficient second-order energy stable BDF scheme for the space fractional Cahn-Hilliard equation. BIT Numer. Math. 61, 1061-1092 (2021) |