[1] Bréhier, C.E.: Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven by space-time white noise. Potential Anal. 40, 1-40 (2014). https://doi.org/10.1007/s11118-013-9338-9 [2] Bréhier, C.E., Cui, J., Hong, J.: Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation. IMA J. Numer. Anal. 39, 2096-2134 (2019). https://doi.org/10.1093/imanum/dry052 [3] Bréhier, C.E., Kopec, M.: Approximation of the invariant law of SPDEs: error analysis using a Poisson equation for a full-discretization scheme. IMA J. Numer. Anal. 37, 1375-1410 (2017). https://doi.org/10.1093/imanum/drw030 [4] Bréhier, C.E., Vilmart, G.: High order integrator for sampling the invariant distribution of a class of parabolic stochastic PDEs with additive space-time noise. SIAM J. Sci. Comput. 38, 2283-2306 (2016). https://doi.org/10.1137/15M1021088 [5] Cui, J., Hong, J.: Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided Lipschitz coefficient. SIAM J. Numer. Anal. 57, 1815-1841 (2019). https://doi.org/10.1137/18M1215554 [6] Cui, J., Hong, J., Sun, L.: Weak convergence and invariant measure of a full discretization for parabolic SPDEs with non-globally Lipschitz coefficients. Stoch. Process. Appl. 134, 55-93 (2021). https://doi.org/10.1016/j.spa.2020.12.003 [7] Cusimano, N., del Teso, F., Gerardo-Giorda, L., Pagnini, G.: Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal. 56, 1243-1272 (2018). https://doi.org/10.1137/17M1128010 [8] Geissert, M., Kovács, M., Larsson, S.: Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT 49, 343-356 (2009). https://doi.org/10.1007/s10543-009-0227-y [9] Grebenkov, D.S., Nguyen, B.T.: Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55, 601-667 (2013). https://doi.org/10.1137/120880173 [10] Jentzen, A.: Higher order pathwise numerical approximations of SPDEs with additive noise. SIAM J. Numer. Anal. 49, 642-667 (2011). https://doi.org/10.1137/080740714 [11] Kruse, R., Wu, Y.: A randomized and fully discrete Galerkin finite element method for semilinear stochastic evolution equations. Math. Comp. 88, 2793-2825 (2019). https://doi.org/10.1090/mcom/3421 [12] Liu, X.: High-accuracy time discretization of stochastic fractional diffusion equation. J. Sci. Comput. 90, 1-24 (2022). https://doi.org/10.1007/s10915-021-01710-w [13] Liu, X.: Strong approximation for fractional wave equation forced by fractional Brownian motion with Hurst parameter H∈(0, 1/2). J. Comput. Appl. Math. 432, 115285 (2023). https://doi.org/10.1016/j.cam.2023.115285 [14] Liu, X., Deng, W.H.: Numerical approximation for fractional diffusion equation forced by a tempered fractional Gaussian noise. J. Sci. Comput. 84, 1-28 (2020). https://doi.org/10.1007/s10915-020-01271-4 [15] Liu, X., Deng, W.H.: Higher order approximation for stochastic space fractional wave equation forced by an additive space-time Gaussian noise. J. Sci. Comput. 87, 1-29 (2021). https://doi.org/10.1007/s10915-021-01415-0 [16] Liu, Z., Qiao, Z.: Strong approximation of monotone stochastic partial differential equations driven by white noise. IAM J. Numer. Anal. 40, 1074-1093 (2020). https://doi.org/10.1093/imanum/dry088 [17] Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Comput. Math. 15, 733-791 (2015). https://doi.org/10.1007/s10208-014-9208-x [18] Song, R., Vondracek, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields. 125, 578-592 (2003). https://doi.org/10.1007/s00440-002-0251-1 [19] Tambue, A., Ngnotchouye, J.M.T.: Weak convergence for a stochastic exponential integrator and finite element discretization of stochastic partial differential equation with multiplicative & additive noise. Appl. Numer. Math. 108, 57-86 (2016). https://doi.org/10.1016/j.apnum.2016.04.013 [20] Wang, X.: Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise. IAM J. Numer. Anal. 37, 965-984 (2017). https://doi.org/10.1093/imanum/drw016 [21] Wang, X.: An efficient explicit full-discrete scheme for strong approximation of stochastic Allen-Cahn equation. Stoch. Process. Appl. 130, 6271-6299 (2020). https://doi.org/10.1016/j.spa.2020.05.011 [22] Wang, X., Gan, S.: Weak convergence analysis of the linear implicit Euler method for semilinear stochastic partial differential equations with additive noise. J. Math. Anal. Appl. 398, 151-169 (2013). https://doi.org/10.1016/j.jmaa.2012.08.038 |