[1] Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368-379 (2002) [2] Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor. 40(24), 6287 (2007) [3] Agrawal, O.P.: Generalized multiparameters fractional variational calculus. Int. J. Differ. Equ. 2012, 1 (2012) [4] Agrawal, O.P., Hasan, M.M., Tangpong, X.W.: A numerical scheme for a class of parametric problem of fractional variational calculus. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. 54785, 165-171 (2011) [5] Akdogan, Z., Yakar, A., Demirci, M.: Discontinuous fractional Sturm-Liouville problems with transmission conditions. Appl. Math. Comput. 350, 1-10 (2019) [6] Allahverdiev, B.P., Tuna, H., Yalçinkaya, Y.: Conformable fractional Sturm-Liouville equation. Math. Methods Appl. Sci. 42(10), 3508-3526 (2019) [7] Al-Mdallal, Q., Al-Refai, M., Syam, M., Al-Srihin, M.D.K.: Theoretical and computational perspectives on the eigenvalues of fourth-order fractional Sturm-Liouville problem. Int. J. Comput. Math. 95(8), 1548-1564 (2018) [8] Amrein, W.O., Hinz, A.M., Pearson, D.B.: Sturm-Liouville Theory: Past and Present. Springer, Berlin (2005) [9] Apostol, T.M., Ablow, C.M.: Mathematical analysis. Phys. Today 11(7), 32 (1958) [10] Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics, vol. 378. Springer, Berlin (2014) [11] Dehestani, H., Ordokhani, Y.: An optimum method for fractal-fractional optimal control and variational problems. Int. J. Dyn. Control. 11(1), 229-241 (2023) [12] Dehghan, M., Mingarelli, A.B.: Fractional Sturm-Liouville eigenvalue problems, I. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas 114(2), 46 (2020) [13] Ferreira, M., Rodrigues, M.M., Vieira, N.: A fractional analysis in higher dimensions for the Sturm-Liouville problem. Fract. Calc. Appl. Anal. 24(2), 585-620 (2021) [14] Ferreira, M., Rodrigues, M.M., Vieira, N.: Application of the fractional Sturm-Liouville theory to a fractional Sturm-Liouville telegraph equation. Complex Anal. Oper. Theory 15(5), 87 (2021) [15] Goel, E., Pandey, R.K., Yadav, S., Agrawal, O.P.: A numerical approximation for generalized fractional Sturm-Liouville problem with application. Math. Comput. Simul. 207, 417-436 (2023) [16] Hajji, M.A., Al-Mdallal, Q.M., Allan, F.M.: An efficient algorithm for solving higher-order fractional Sturm-Liouville eigenvalue problems. J. Comput. Phys. 272, 550-558 (2014) [17] Khosravian-Arab, H., Dehghan, M., Eslahchi, M.: Fractional Sturm-Liouville boundary value problems in unbounded domains: theory and applications. J. Comput. Phys. 299, 526-560 (2015) [18] Khosravian-Arab, H., Dehghan, M., Eslahchi, M.: Fractional spectral and pseudo-spectral methods in unbounded domains: theory and applications. J. Comput. Phys. 338, 527-566 (2017) [19] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Berlin (2006) [20] Klimek, M., Agrawal, O.P.: On a regular fractional Sturm-Liouville problem with derivatives of order in (0,1). In: Proceedings of the 13th International Carpathian Control Conference (ICCC), pp. 284-289. IEEE, New York (2012) [21] Klimek, M., Agrawal, O.P.: Fractional Sturm-Liouville problem. Comput. Math. Appl. 66(5), 795-812 (2013) [22] Klimek, M., Odzijewicz, T., Malinowska, A.B.: Variational methods for the fractional Sturm-Liouville problem. J. Math. Anal. Appl. 416(1), 402-426 (2014) [23] Li, J., Qi, J.: Eigenvalue problems for fractional differential equations with right and left fractional derivatives. Appl. Math. Comput. 256, 1-10 (2015) [24] Lofti, A., Yousefi, S.A.: A numerical technique for solving a class of fractional variational problems. J. Comput. Appl. Math. 237(1), 633-643 (2013) [25] Machado, J.T., Mata, M.E.: Pseudo phase plane and fractional calculus modelling of western global economic downturn. Commun. Nonlinear Sci. Numer. Simul. 22(1/2/3), 396-406 (2015) [26] Magin, R.L.: Fractional calculus in bioengineering. In: Critical ReviewsTM in Biomedical Engineering, vol. 32(1). Begel House Inc., London (2004) [27] Mansour, Z.S.: Variational methods for fractional q-Sturm-Liouville problems. Bound. Value Problems 2016(1), 1-31 (2016) [28] McLean, W., McLean, W.C.H.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000) [29] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Willey, London (1993) [30] Pandey, D., Kumar, K., Pandey, R.K.: Approximation schemes for a quadratic type generalized isoperimetric constraint fractional variational problems. J. Anal. 2023, 1-28 (2023) [31] Pandey, D., Pandey, R.K., Agarwal, R.P.: Numerical approximation of fractional variational problems with several dependent variables using Jacobi poly-fractonomials. Math. Comput. Simul. 203, 28-43 (2023) [32] Pandey, R.K., Agrawal, O.P.: Comparison of four numerical schemes for isoperimetric constraint fractional variational problems with A-operator. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 57199. American Society of Mechanical Engineers V009-7A025, New York (2015) [33] Pandey, R.K., Agrawal, O.P.: Numerical scheme for a quadratic type generalized isoperimetric constraint variational problems with A-operator. J. Comput. Nonlinear Dyn. 10(2), 021003 (2015) [34] Pandey, P.K., Pandey, R.K., Agrawal, O.P.: Variational approximation for fractional Sturm-Liouville problem. Fract. Cal. Appl. Anal. 23(3), 861-874 (2020) [35] Pandey, R.K., Pandey, P.K., Agrawal, O.P.: Sturm’s theorems for generalized derivative and generalized Sturm-Liouville problem. Math. Commun. 28(1), 141-152 (2023) [36] Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, New York (1998) [37] Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890 (1996) [38] Rivero, M., Trujillo, J.J., Velasco, M.P.: A fractional approach to the Sturm-Liouville problem. Open Phys. 11(10), 1246-1254 (2013) [39] Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14-28 (2015) [40] Syam, M.I., Al-Mdallal, Q.M., Al-Refai, M.: A numerical method for solving a class of fractional Sturm-Liouville eigenvalue problems. Commun. Numer. Anal. 2, 217-232 (2017) [41] Tian, Y., Du, Z., Ge, W.: Existence results for discrete Sturm-Liouville problem via variational methods. J. Differ. Equ. Appl. 13(6), 467-478 (2007) [42] Van Brunt, B.: Application to eigenvalue problems. Calc. Var. 2004, 103-118 (2004) [43] Xu, Y., Agrawal, O.P.: Models and numerical solutions of generalized oscillator equations. J. Vib. Acoust. 136(5), 050903 (2014) [44] Yadav, S., Pandey, R.K., Pandey, P.K.: Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation. Int. J. Numer. Methods Fluids 93(3), 610-627 (2021) [45] Yakar, A., Akdogan, Z.: On the fundamental solutions of a discontinuous fractional boundary value problem. Adv. Differ. Equ. 2017(1), 1-15 (2017) [46] Yousefi, S., Dehghan, M., Lotfi, A.: Generalized Euler-Lagrange equations for fractional variational problems with free boundary conditions. Comput. Math. Appl. 62(3), 987-995 (2011) [47] Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: Tempered fractional Sturm-Liouville eigenproblems. SIAM J. Sci. Comput. 37(4), A1777-A1800 (2015) [48] Zayernouri, M., Karniadakis, G.E.: Fractional Sturm-Liouville eigen problems: theory and numerical approximation. J. Comput. Phys. 252, 495-517 (2013) [49] Zettl, A.: Sturm-Liouville Theory, vol. 121. American Mathematical Soc., New York (2010) |