[1] Aboelenen, T.: A direct discontinuous Galerkin method for fractional convection-diffusion and Schrödinger type equations. arXiv:1708.04546 (2017) [2] Aboelenen, T.: A high-order nodal discontinuous Galerkin method for nonlinear fractional Schrödinger type equations. Commun. Nonlinear Sci. Numer. Simul. 54, 428-452 (2018) [3] Aboelenen, T.: Local discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrödinger-type equations. Nonlinear Dyn. 92(2), 395-413 (2018) [4] Aboelenen, T.: Discontinuous Galerkin methods for fractional elliptic problems. Comput. Appl. Math. 39(2), 1-23 (2020) [5] Aboelenen, T.: Stability analysis and error estimates of implicit-explicit Runge-Kutta local discontinuous Galerkin methods for nonlinear fractional convection-diffusion problems. Comput. Appl. Math. 41(6), 256 (2022) [6] Aboelenen, T., Bakr, S.A., El-Hawary, H.M.: Fractional Laguerre spectral methods and their applications to fractional differential equations on unbounded domain. Int. J. Comput. Math. 94(3), 570-596 (2017) [7] Abramowitz, M.: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, Incorporated, Mineola (1974) [8] Abramowitz, M., Stegun, I.A., Romer, R.H.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. American Association of Physics Teachers, College Park, MD (1988) [9] Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61(1), 132 (2000) [10] Bashour, M., Dalir, M.: Applications of fractional calculus. Appl. Math. Sci. 4(21), 1021-1032 (2010) [11] Biler, P., Funaki, T., Woyczynski, W.A.: Fractal Burgers equations. J. Differential Equations 148(1), 9-46 (1998) [12] Chen, L., Mao, Z., Li, H.: Jacobi-Galerkin spectral method for eigenvalue problems of Riesz fractional differential equations. arXiv:1803.03556 (2018) [13] Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603-1638 (2016) [14] Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228(20), 7792-7804 (2009) [15] De Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226(2), 1378-1409 (2011) [16] Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204-226 (2009) [17] Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 47(6), 1845-1864 (2013) [18] Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional ADAMs method. Numer. Algorithms 36(1), 31-52 (2004) [19] Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differential Equations 22(3), 558-576 (2006) [20] Ford, N.J., Xiao, J., Yan, Y.: A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 14(3), 454-474 (2011) [21] Gautschi, W.: On the computation of generalized Fermi-Dirac and Bose-Einstein integrals. Comput. Phys. Commun. 74(2), 233-238 (1993) [22] Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004) [23] Gu, D.-Q., Wang, Z.-Q.: Orthogonal Jacobi rational functions and spectral methods on the half line. J. Sci. Comput. 88(1), 1-27 (2021) [24] Guo, B.-Y., Shen, J., Wang, L.-L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59(5), 1011-1028 (2009) [25] Guo, B.-Y., Wang, L.-L., Wang, Z.-Q.: Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM J. Numer. Anal. 43(6), 2567-2589 (2006) [26] Guo, B.-Y., Yi, Y.-G.: Generalized Jacobi rational spectral method and its applications. J. Sci. Comput. 43(2), 201-238 (2010) [27] Guo, B.-Y., Zhang, X.-Y.: A new generalized Laguerre spectral approximation and its applications. J. Comput. Appl. Math. 181(2), 342-363 (2005) [28] Hale, N., Olver, S.: A fast and spectrally convergent algorithm for rational-order fractional integral and differential equations. SIAM J. Sci. Comput. 40(4), A2456-A2491 (2018) [29] Hashim, I., Abdulaziz, O., Momani, S.: Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 14(3), 674-684 (2009) [30] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) [31] Jafari, H., Daftardar-Gejji, V.: Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl. Math. Comput. 180(2), 488-497 (2006) [32] Khader, M.: On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2535-2542 (2011) [33] Khosravian-Arab, H., Dehghan, M., Eslahchi, M.: Fractional Sturm-Liouville boundary value problems in unbounded domains: theory and applications. J. Comput. Phys. 299, 526-560 (2015) [34] Khosravian-Arab, H., Dehghan, M., Eslahchi, M.: Fractional spectral and pseudo-spectral methods in unbounded domains: theory and applications. J. Comput. Phys. 338, 527-566 (2017) [35] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies). Elsevier Science Inc., New York (2006) [36] Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533-1552 (2007) [37] Lischke, A., Zayernouri, M., Karniadakis, G.E.: A Petrov-Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line. SIAM J. Sci. Comput. 39(3), A922-A946 (2017) [38] Magin, R.: Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng. 32(1), 1-104 (2004) [39] Miller, K.S.: The Weyl Fractional Calculus. Springer, Berlin (1975) [40] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) [41] Mustapha, K., McLean, W.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56(2), 159-184 (2011) [42] Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9-12 (2010) [43] Pichon, B.: Numerical calculation of the generalized Fermi-Dirac integrals. Comput. Phys. Commun. 55(2), 127-136 (1989) [44] Rawashdeh, E.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176(1), 1-6 (2006) [45] Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Appl. 284(1-4), 376-384 (2000) [46] Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal. 38(4), 1113-1133 (2000) [47] Sheng, C., Shen, J., Tang, T., Wang, L.-L., Yuan, H.: Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains. SIAM J. Numer. Anal. 58(5), 2435-2464 (2020) [48] Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. Springer Science & Business Media, Berlin (2011) [49] Tang, T., Wang, L.-L., Yuan, H., Zhou, T.: Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains. SIAM J. Sci. Comput. 42(2), A585-A611 (2020) [50] Tang, T., Yuan, H., Zhou, T.: Hermite spectral collocation methods for fractional PDEs in unbounded domains. arXiv:1801.09073 (2018) [51] Wang, Z.-Q., Guo, B.-Y.: Jacobi rational approximation and spectral method for differential equations of degenerate type. Math. Comput. 77(262), 883-907 (2008) [52] Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52(1), 405-423 (2014) [53] Yi, Y.-G., Guo, B.-Y.: Generalized Jacobi rational spectral method on the half line. Adv. Comput. Math. 37(1), 1-37 (2012) [54] Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862-1874 (2005) [55] Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40-A62 (2014) [56] Zeng, F., Mao, Z., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities. SIAM J. Sci. Comput. 39(1), A360-A383 (2017) |