Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6): 2289-2338.doi: 10.1007/s42967-024-00374-1

• ORIGINAL PAPERS • Previous Articles     Next Articles

Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Systems with Non-conservative Products

Dinshaw S. Balsara1,2, Deepak Bhoriya1, Chi-Wang Shu3, Harish Kumar4   

  1. 1. Physics Department, University of Notre Dame, Notre Dame, USA;
    2. ACMS Department, University of Notre Dame, Notre Dame, USA;
    3. Division of Applied Mathematics, Brown University, Providence, USA;
    4. Department of Mathematics, Indian Institute of Technology, Delhi, India
  • Received:2023-07-17 Revised:2023-12-06 Published:2025-12-24
  • Contact: Dinshaw S. Balsara, E-mail:dbalsara@nd.edu E-mail:dbalsara@nd.edu
  • Supported by:
    The funding has been acknowledged. DSB acknowledges support via the NSF Grants NSF-19-04774, NSF-AST-2009776, NASA-2020-1241, and NASA-80NSSC22K0628. DSB and HK acknowledge support from a Vajra award, VJR/2018/00129. CWS acknowledges support via AFOSR Grant FA9550-20-1-0055 and NSF Grant DMS-2010107.

Abstract: Higher order finite difference Weighted Essentially Non-oscillatory (WENO) schemes for conservation laws represent a technology that has been reasonably consolidated. They are extremely popular because, when applied to multidimensional problems, they offer high order accuracy at a fraction of the cost of finite volume WENO or DG schemes. They come in two flavors. There is the classical finite difference WENO (FD-WENO) method (Shu and Osher in J. Comput. Phys. 83: 32–78, 1989). However, in recent years there is also an alternative finite difference WENO (AFD-WENO) method which has recently been formalized into a very useful general-purpose algorithm for conservation laws (Balsara et al. in Efficient alternative finite difference WENO schemes for hyperbolic conservation laws, submitted to CAMC, 2023). However, the FD-WENO algorithm has only very recently been formulated for hyperbolic systems with non-conservative products (Balsara et al. in Efficient finite difference WENO scheme for hyperbolic systems with non-conservative products, to appear CAMC, 2023). In this paper, we show that there are substantial advantages in obtaining an AFD-WENO algorithm for hyperbolic systems with non-conservative products. Such an algorithm is documented in this paper. We present an AFD-WENO formulation in a fluctuation form that is carefully engineered to retrieve the flux form when that is warranted and nevertheless extends to non-conservative products. The method is flexible because it allows any Riemann solver to be used. The formulation we arrive at is such that when non-conservative products are absent it reverts exactly to the formulation in the second citation above which is in the exact flux conservation form. The ability to transition to a precise conservation form when non-conservative products are absent ensures, via the Lax-Wendroff theorem, that shock locations will be exactly captured by the method. We present two formulations of AFD-WENO that can be used with hyperbolic systems with non-conservative products and stiff source terms with slightly differing computational complexities. The speeds of our new AFD-WENO schemes are compared to the speed of the classical FD-WENO algorithm from the first of the above-cited papers. At all orders, AFD-WENO outperforms FD-WENO. We also show a very desirable result that higher order variants of AFD-WENO schemes do not cost that much more than their lower order variants. This is because the larger number of floating point operations associated with larger stencils is almost very efficiently amortized by the CPU when the AFD-WENO code is designed to be cache friendly. This should have great, and very beneficial, implications for the role of our AFD-WENO schemes in the Peta- and Exascale computing. We apply the method to several stringent test problems drawn from the Baer-Nunziato system, two-layer shallow water equations, and the multicomponent debris flow. The method meets its design accuracy for the smooth flow and can handle stringent problems in one and multiple dimensions. Because of the pointwise nature of its update, AFD-WENO for hyperbolic systems with non-conservative products is also shown to be a very efficient performer on problems with stiff source terms.

Key words: Hyperbolic PDEs, Numerical schemes, Conservation laws, Stiff source terms, Finite difference WENO

CLC Number: