1. Abgrall, R.:Residual distribution schemes:current status and future trends. Comput. Fluids 35(7), 641-669 (2006) 2. Abgrall, R.:High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. J. Sci. Comput. 73(2/3), 461-494 (2017) 3. Abgrall, R.:A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640-666 (2018) 4. Abgrall, R., Bacigaluppi, P., Tokareva, S.:A high-order nonconservative approach for hyperbolic equations in fluid dynamics. Comput. Fluids 169, 10-22 (2018) 5. Abgrall, R., Meledo, E.l., Oeffner, P.:On the connection between residual distribution schemes and flux reconstruction. arXiv:1807.01261 (2018) 6. Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.:Analysis of the SBP-SAT stabilization for finite element methods part I:linear problems. arXiv:1912.08108 (2019) 7. Abgrall, R., Öffner, P., Ranocha, H.:Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes. arXiv:1908.04556 (2019) 8. Abgrall, R., Roe, P.L.:High order fluctuation schemes on triangular meshes. J. Sci. Comput. 19(1/2/3), 3-36 (2003) 9. Burman, E., Hansbo, P.:Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 193(15/16), 1437-1453 (2004) 10. Chen, T., Shu, C.-W.:Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427-461 (2017) 11. Chen, T., Shu, C.-W.:Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes. CSIAM Trans. Appl. Math. 1, 1-52 (2020) 12. Deconinck, H., Sermeus, K., Abgrall, R.:Status of multidimensional upwind distribution schemes and applications in aeronautics. AIAA Pap. 4079, 2007 (2000) 13. Ern, A., Guermond, J.-L.:Discontinuous Galerkin methods for Friedrichs' systems. I. General theory. SIAM J. Numer. Anal. 44(2), 753-778 (2006) 14. Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.:Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171-196 (2014) 15. Fisher, T.C., Carpenter, M.H.:High-order entropy stable finite difference schemes for nonlinear conservation laws:finite domains. Technical Report NASA/TM-2013-217971, NASA, NASA Langley Research Center, Hampton, VA 23681-2199, United States (2013) 16. Friedrich, L., Schnücke, G., Winters, A.R., Fernández, D.C.D.R., Gassner, G.J., Carpenter, M.H.:Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws. J. Sci. Comput. 80(1), 175-222 (2019) 17. Friedrichs, K.O.:Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11(3), 333-418 (1958) 18. Gassner, G.J.:A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233-A1253 (2013) 19. Gassner, G.J., Winters, A.R., Kopriva, D.A.:A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291-308 (2016) 20. Glaubitz, J., Öffner, P., Ranocha, H., Sonar, T.:Artificial viscosity for correction procedure via reconstruction using summation-by-parts operators. In:XVI International Conference on Hyperbolic Problems:Theory, Numerics, Applications, pp 363-375. Springer, New York (2016) 21. Godlewski, E., Raviart, P.-A.:Hyperbolic Systems of Conservation Laws. Ellipses, Oxford (1991) 22. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.:Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011) 23. Harten, A.:On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151-164 (1983) 24. Johnson, C., Nävert, U., Pitkäranta, J.:Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45, 285-312 (1984) 25. Ketcheson, D.I.:Relaxation Runge-Kutta methods:conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57(6), 2850-2870 (2019) 26. Lax, P.D.:Shock waves and entropy. In:Zarantonello, E.H. (ed) Contributions to Nonlinear Functional Analysis, pp. 603-634. Mathematics Research Center, University of Madison, Academic Press, Cambridge (1971) 27. Mock, M.S.:Systems of conservation laws of mixed type. J. Differ. Equ. 37(1), 70-88 (1980) 28. Nordström, J.:Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29(3), 375-404 (2006) 29. Nordström, J.:A roadmap to well posed and stable problems in computational physics. J. Sci. Comput. 71(1), 365-385 (2017) 30. Nordström, J., La Cognata, C.:Energy stable boundary conditions for the nonlinear incompressible Navier-Stokes equations. Math. Comput. 88(316), 665-690 (2019) 31. Nordström, J., Lundquist, T.:Summation-by-parts in time. J. Comput. Phys. 251, 487-499 (2013) 32. Öffner, P.:Error boundedness of correction procedure via reconstruction/flux reconstruction. arXiv:1806.01575 (2019) 33. Öffner, P., Glaubitz, J., Ranocha, H.:Analysis of artificial dissipation of explicit and implicit timeintegration methods. Int. J. Numer Anal. Model. 17(3), 332-349 (2020) 34. Öffner, P., Glaubitz, J., Ranocha, H.:Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach. ESAIM Math. Model. Numer. Anal. 52(6), 2215-2245 (2018) 35. Öffner, P., Hendrik, R.:Error boundedness of discontinuous Galerkin methods with variable coefficients. J. Sci. Comput. 79, 1572-1607 (2019) 36. Ranocha, H., Öffner, P., Sonar, T.:Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299-328 (2016) 37. Ricchiuto, M., Abgrall, R.:Explicit Runge-Kutta residual distribution schemes for time dependent problems:second order case. J. Comput. Phys. 229(16), 5653-5691 (2010) 38. Svärd, M., Nordström, J.:Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17-38 (2014) 39. Tadmor, E.:The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91-103 (1987) |