Communications on Applied Mathematics and Computation ›› 2022, Vol. 4 ›› Issue (3): 945-985.doi: 10.1007/s42967-021-00166-x
• ORIGINAL PAPER • Previous Articles Next Articles
Dinshaw S. Balsara1, Roger Käppeli2
Received:
2021-04-11
Revised:
2021-08-23
Online:
2022-09-20
Published:
2022-07-04
Contact:
Dinshaw S. Balsara,E-mail:dbalsara@nd.edu;Roger Käppeli,E-mail:roger.kaeppeli@sam.math.ethz.ch
E-mail:dbalsara@nd.edu
Supported by:
CLC Number:
Dinshaw S. Balsara, Roger Käppeli. Von Neumann Stability Analysis of DG-Like and PNPM-Like Schemes for PDEs with Globally Curl-Preserving Evolution of Vector Fields[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 945-985.
[1] Alic, D., Bona, C., Bona-Casas, C.: Towards a gauge-polyvalent numerical relativity code. Phys. Rev. D 79(4), 044026 (2009) [2] Alic, D., Bona-Casas, C., Bona, C., Rezzolla, L., Palenzuela, C.: Conformal and covariant formulation of the Z4 system with constraint-violation damping. Phys. Rev. D 85, 064040 (2012). https://doi.org/10.1103/PhysRevD.85.064040 [3] Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamical flows. J. Comput. Phys. 229, 1970–1993 (2010) [4] Balsara, D.S.: A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012) [5] Balsara, D.S.: Multidimensional Riemann problem with self-similar internal structure. Part I—Application to hyperbolic conservation laws on structured meshes. J. Comput. Phys. 277, 163–200 (2014) [6] Balsara, D.S.: Three dimensional HLL Riemann solver for conservation laws on structured meshes; application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 295, 1–23 (2015) [7] Balsara, D.S., Dumbser, M.: Multidimensional Riemann problem with self-similar internal structure. Part II—Application to hyperbolic conservation laws on unstructured meshes. J. Comput. Phys. 287, 269–292 (2015) [8] Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLL Riemann solver for unstructured meshes—with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014) [9] Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016) [10] Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional Riemann solvers. J. Comput. Phys. 336, 104–127 (2017) [11] Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally constraint-preserving DGTD and PNPM schemes for the Maxwell equations using multidimensional Riemann solvers. J. Comput. Phys. 376, 1108–1137 (2019) [12] Balsara, D.S., Käppeli, R., Boscheri, W., Dumbser, M.: Curl constraint-preserving reconstruction and the guidance it gives for mimetic scheme design. arXiv: 2009.03522 [13] Balsara, D.S., Kumar, R., Chandrashekar, P.: Globally divergence-free DG schemes for ideal compressible MHD at all orders. Commun. Appl. Math. Comput. Sci. 16(1), 59–98 (2021) [14] Balsara, D.S., Nkonga, B.: Formulating multidimensional Riemann solvers in similarity variables—part III: a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346, 25–48 (2017) [15] Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000) [16] Balsara, D.S., Vides, J., Gurski, K., Nkonga, B., Dumbser, M., Garain, S., Audit, E.: A two-dimensional Riemann solver with self-similar sub-structure—alternative formulation based on least squares projection. J. Comput. Phys. 304, 138–161 (2016) [17] Boscheri, W., Dumbser, M., Ioriatti, M., Peshkov, I., Romenski, E.: A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics. J. Comput. Phys. 424, 109866 (2021) [18] Brown, J.D., Diener, P., Field, S.E., Hesthaven, J.S., Herrmann, F., Mroué, A.H., Sarbach, O., Schnetter, E., Tiglio, M., Wagman, M.: Numerical simulations with a first-order BSSN formulation of Einstein’s field equations. Phys. Rev. D 85(8), 084004 (2012) [19] Busto, S., Dumbser, M., Escalante, C., Favrie, N., Gavrilyuk, S.: On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems. J. Sci. Comput. 87, 48 (2021) [20] Cockburn, B., Hou, S., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. J. Comput. Phys. 54, 545–581 (1990) [21] Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin Methods. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds) Discontinuous Galerkin Methods: Theory, Computation and Applications, Part I: Overview. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3–50. Springer, Berlin (2000) [22] Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989) [23] Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998) [24] Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection dominated problems. J. Sci. Comput. 16, 173–261 (2001) [25] Dhaouadi, F., Favrie, N., Gavrilyuk, S.: Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation. Stud. Appl. Math. 142, 1–20 (2018) [26] Dumbser, M., Balsara, D., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008) [27] Dumbser, M., Chiocchetti, S., Peshkov, I.: On numerical methods for hyperbolic PDE with curl involutions. In: Demidenko, G.V., et al. (eds) Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov’s Legacy. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-38870-6_17 [28] Dumbser, M., Fambri, Gaburro, E., Reinarz, A.: On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations. J. Comput. Phys. 404, 109088 (2020) [29] Dumbser, M., Guercilena, F., Köppel, S., Rezzolla, L., Zanotti, O.: A strongly hyperbolic first-order CCZ4 formulation of the Einstein equations and its solution with discontinuous Galerkin schemes. Phys. Rev. D 97, 084053 (2018) [30] Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016) [31] Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics. J. Comput. Phys. 348, 298–342 (2017) [32] Godunov, S.K., Romenski, E.I.: Nonstationary equations of the nonlinear theory of elasticity in Euler coordinates. J. Appl. Mech. Tech. Phys. 13, 868–885 (1972) [33] Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving higher order time discretization methods. SIAM Rev. 43(1), 89–112 (2001) [34] Hazra, A., Chandrashekar, P., Balsara, D.S.: Globally constraint-preserving FR/DG scheme for Maxwell’s equations at all orders. J. Comput. Phys. 394, 298–328 (2019) [35] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) [36] Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: L2 stability analysis of the central discontinuous Galerkin method and comparison between the central and regular discontinuous Galerkin methods. Math. Model. Numer. Anal. 42, 593–607 (2008) [37] Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Contin. Mech. Thermodyn. 30(6), 1343–1378 (2018) [38] Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Contin. Mech. Thermodyn. 28, 85–104 (2016) [39] Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973) [40] Romenski, E.I.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model. 28(10), 115–130 (1998) [41] Romenski, E., Drikakis, D., Toro, E.F.: Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42, 68–95 (2010) [42] Schmidmayer, K., Petitpas, F., Daniel, E., Favrie, N., Gavrilyuk, S.: A model and numerical method for compressible flows with capillary effects. J. Comput. Phys. 334, 468–496 (2017) [43] Shu, C.-W.: Total variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988) [44] Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988) [45] Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989) [46] Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time-stepping schemes. SIAM J. Numer. Anal. 40, 469–491 (2002) [47] Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods. Math. Comput. Simul. 62, 125–135 (2003) [48] Zhang, M., Shu, C.-W.: An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids 34, 581–592 (2005) |
[1] | Xiaozhou Li. How to Design a Generic Accuracy-Enhancing Filter for Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 759-782. |
[2] | Lorenzo Botti, Daniele A. Di Pietro. p-Multilevel Preconditioners for HHO Discretizations of the Stokes Equations with Static Condensation [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 783-822. |
[3] | Ohannes A. Karakashian, Michael M. Wise. A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 823-854. |
[4] | Lu Zhang, Daniel Appelö, Thomas Hagstrom. Energy-Based Discontinuous Galerkin Difference Methods for Second-Order Wave Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 855-879. |
[5] | Poorvi Shukla, J. J. W. van der Vegt. A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 904-944. |
[6] | Lukáš Vacek, Václav Kučera. Discontinuous Galerkin Method for Macroscopic Traffic Flow Models on Networks [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 986-1010. |
[7] | Jiawei Sun, Shusen Xie, Yulong Xing. Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 381-416. |
[8] | Jennifer K. Ryan. Capitalizing on Superconvergence for More Accurate Multi-Resolution Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 417-436. |
[9] | Mahboub Baccouch. Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second-Order Elliptic Problems on Cartesian Grids [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 437-476. |
[10] | Gang Chen, Bernardo Cockburn, John R. Singler, Yangwen Zhang. Superconvergent Interpolatory HDG Methods for Reaction Difusion Equations II: HHO-Inspired Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 477-499. |
[11] | Xue Hong, Yinhua Xia. Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Methods for KdV Type Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 530-562. |
[12] | Xiaobing Feng, Thomas Lewis, Aaron Rapp. Dual-Wind Discontinuous Galerkin Methods for Stationary Hamilton-Jacobi Equations and Regularized Hamilton-Jacobi Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 563-596. |
[13] | Andreas Dedner, Tristan Pryer. Discontinuous Galerkin Methods for a Class of Nonvariational Problems [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 634-656. |
[14] | Andreas Dedner, Robert Klöfkorn. Extendible and Efcient Python Framework for Solving Evolution Equations with Stabilized Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 657-696. |
[15] | Will Pazner, Tzanio Kolev. Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp-Refnement [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 697-727. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||