[1] Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Applied Mathematics Series, vol. 55. National Bureau of Standards (1965) [2] Adams, R.: Sobolev Spaces. Academic Press, New York (1975) [3] Ash, J., Cohen, J., Wang, G.: On strongly interacting internal solitary waves. J. Fourier Anal. Appl. 2, 507–517 (1996) [4] Baker, G.A., Dougalis, V.A., Karakashian, O.A.: Convergence of Galerkin approximations for the Korteweg-de Vries equation. Math. Comput. 40(162), 419–433 (1983). http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-1983-0689464-4 [5] Biello, J.: Nonlinearly coupled KdV equations describing the interaction of equatorial and midlatitude Rossby waves. Chin. Ann. Math. Ser. B 30(5), 483–504 (2009) [6] Bona, J.L.: Convergence of periodic wavetrains in the limit of large wavelength. Appl. Sci. Res. 37(1), 21–30 (1981) [7] Bona, J.L., Chen, H., Karakashian, O.A.: Stability of solitary-wave solutions of systems of dispersive equations. Appl. Math. Optim. 75, 27–53 (2017) [8] Bona, J.L., Chen, H., Karakashian, O.A.: Instability of solitary-wave solutions of systems of coupled KdV equations: theory and numerical results (2020) (Preprint) [9] Bona, J.L., Chen, H., Karakashian, O.A., Wise, M.M.: Finite element methods for a system of dispersive equations. J. Sci. Comput. 77(3), 1371–1401 (2018) [10] Bona, J.L., Chen, H., Karakashian, O.A., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013). http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-2013-02661-0 [11] Bona, J.L., Chen, H., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: derivation and linear theory. J. Nonlinear Sci. 12(4), 283–318 (2002) [12] Bona, J.L., Chen, H., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: the nonlinear theory. Nonlinearity 17(3), 925–952 (2004) [13] Bona, J.L., Cohen, J., Wang, G.: Global well-posedness for a system of KdV-type equations with coupled quadratic nonlinearities. Nagoya Math. J. 215(1), 67–149 (2014) [14] Bona, J.L., Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. (1934–1990) 278(1287), 555–601 (1975) [15] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, ser. Texts in Applied Mathematics, vol. 15. Springer, New York (2008) [16] Chen, H.: Long-period limit of nonlinear dispersive waves. Differ. Integr. Equations 19, 463–480 (2006) [17] Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008). http://www.ams.org/journal-getitem?pii=S0025-5718-07-02045-5 [18] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness for KdV and modified KdV on \begin{document}$ \mathbb{R} $\end{document} and \begin{document}$ \mathbb{T} $\end{document}. J. Am. Math. Soc. 16(3), 705–749 (2003). http://www.ams.org/jourcgi/jour-getitem?pii=S0894-0347-03-00421-1 [19] Hakkaev, S.: Stability and instability of solitary wave solutions of a nonlinear dispersive system of Benjamin-Bona-Mahony type. Serdica Math. J. 29, 337–354 (2003) [20] Karakashian, O., Makridakis, C.: A posteriori error estimates for discontinuous Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 84(293), 1145–1167 (2015) [21] Majda, A., Biello, J.: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 60(15), 1809 (2003). http://search.proquest.com/docview/236571709/ [22] Majda, A., Biello, J.: Boundary layer dissipation and the nonlinear interaction of equatorial baroclinic and barotropic Rossby waves. Geophys. Astrophys. Fluid Dyn. 98(2), 85–127 (2004) |