1.Abramowitz, M., Stegun, I.A.:Handbook of Mathematical Functions:With Formulas, Graphs, and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No.55).U.S.Government Printing Ofce, Washington (1965) 2.Bona, J., Chen, H., Karakashian, O., Xing, Y.:Conservative, discontinuous Galerkin methods for the generalized Korteweg-de Vries equation.Math.Comput.82, 1401-1432 (2013) 3.Ciarlet, P.:The Finite Element Method for Elliptic Problem.North Holland, Amsterdam (1975) 4.Cockburn, B., Guzmán, J.:Error estimate for the Runge-Kutta discontinuous Galerkin method for transport equation with discontinuous initial data.SIAM J.Numer.Anal.46, 1364-1398 (2008) 5.Cockburn, B., Shu, C.-W.:TVB Runge-Kutta local projection discontinuous Galerkin fnite element method for conservation laws II:general framework.Math.Comput.52, 411-435 (1989) 6.Cockburn, B., Shu, C.-W.:The Runge-Kutta discontinuous Galerkin method for conservation laws V:multidimensional systems.J.Comput.Phys.141, 199-224 (1998) 7.Cockburn, B., Lin, S.Y., Shu, C.-W.:TVB Runge-Kutta local projection discontinuous Galerkin fnite element method for conservation laws III:one-dimensional systems.J.Comput.Phys.84, 90-113 (1989) 8.Cockburn, B., Hou, S., Shu, C.-W.:The Runge-Kutta local projection discontinuous Galerkin fnite element method for conservation laws IV:the multidimensional case.Math.Comput.54, 545-581 (1990) 9.Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.:Enhanced accuracy by post-processing for fnite element methods for hyperbolic equations.Math.Comput.72, 577-606 (2003) 10.Di, Y.N., Li, R., Tang, T., Zhang, P.W.:Moving mesh fnite element methods for the incompressible Navier-Stokes equations.SIAM J.Sci.Comput.26, 1036-1056 (2005) 11.Donea, J., Huerta, A., Ponthot, J.P., Rodríguez-Ferran, A.:Arbitrary Lagrangian-Eulerian methods.In:Stein, E., de Borst, R., Hughes, T.J.R.(eds.) Encyclopedia of Computational Mechanics, pp.413-437.John Wiley & Sons, Ltd (2004) 12.Fornberg, B., Whitham, G.B.:A numerical and theoretical study of certain nonlinear wave phenomena.Philos.Trans.R.Soc.Lond.Ser.A Math.Phys.Sci.289, 373-404 (1978) 13.Fu, P., Schnücke, G., Xia, Y.:Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws on moving simplex meshes.Math.Comput.88, 2221-2255 (2019) 14.Gardner, C.S.:Korteweg-de Vries equation and generalizations.IV.The Korteweg-de Vries equation as a Hamiltonian system.J.Math.Phys.12, 1548-1551 (1971) 15.Goda, K.:On stability of some fnite diference schemes for the Korteweg-de Vries equation.J.Phys.Soc.Jpn.39, 229-236 (1975) 16.Guillard, H., Farhat, C.:On the signifcance of the geometric conservation law for fow computations on moving meshes.Comput.Methods Appl.Mech.Eng.190, 1467-1482 (2000) 17.Hirt, C.W., Amsden, A.A., Cook, J.L.:An arbitrary Lagrangian-Eulerian computing method for all fow speeds.J.Comput.Phys.14, 227-253 (1974) 18.Hong, X., Xia, Y.:Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for hyperbolic equations involving δ-singularities.SIAM J.Numer.Anal.58, 125-152 (2020) 19.Huang, W.Z., Ren, Y., Russell, R.D.:Moving mesh partial diferential equations (MMPDEs) based upon the equidistribution principle.SIAM J.Numer.Anal.31, 709-730 (1994) 20.Huang, W.Z., Russell, R.D.:Adaptive Moving Mesh Methods.Springer, Berlin (2010) 21.Kalantari, I.:Induction over the continuum.In:Friend, M., Goethe, N.B., Harizanov, V.S.(eds.) Induction, Algorithmic Learning Theory, and Philosophy.Logic, Epistemology, and the Unity of Science, vol.9, pp.145-154.Springer, Dordrecht (2007) 22.Karakashian, O., Xing, Y.:A posteriori error estimates for conservative local discontinuous Galerkin methods for the generalized Korteweg-de Vries equation.Commun.Comput.Phys.20, 250-278 (2016) 23.Kennedy, C.A., Carpenter, M.H.:Additive Runge-Kutta schemes for convection-difusion-reaction equations.Appl.Numer.Math.44, 139-181 (2003) 24.Klingenberg, C., Schnücke, G., Xia, Y.:Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws:analysis and application in one dimension.Math.Comput.86, 1203-1232 (2017) 25.Klingenberg, C., Schnücke, G., Xia, Y.:An arbitrary Lagrangian-Eulerian local discontinuous Galerkin method for Hamilton-Jacobi equations.J.Sci.Comput.73, 906-942 (2017) 26.Korteweg, D.J., de Vries, G.:On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves.Phil.Mag.39, 422-443 (1895) 27.Kutluay, S., Bahadir, A.R., Özdeş, A.:A small time solutions for the Korteweg-de Vries equation.Appl.Math.Comput.107, 203-210 (2000) 28.Li, R., Tang, T.:Moving mesh discontinuous Galerkin method for hyperbolic conservation laws.J.Sci.Comput.27, 347-363 (2006) 29.Liu, H., Yi, N.:A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg-de Vries equation.J.Comput.Phys.321, 776-796 (2016) 30.Reed, W.H., Hill, T.R.:Triangular mesh methods for the Neutron transport equation, Los Alamos Scientifc Laboratory Report LA-UR-73-479.Los Alamos, NM (1973) 31.Sun, Z., Xing, Y.:On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations:energy conservation and multi-symplecticity.J.Comput.Phys.109662 (2020) 32.Tang, H.Z., Tang, T.:Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws.SIAM J.Numer.Anal.41, 487-515 (2003) 33.Vliegenthart, A.C.:On fnite-diference methods for the Korteweg-de Vries equation.J.Eng.Math.5, 137-155 (1971) 34.Xia, Y., Xu, Y., Shu, C.-W.:Efcient time discretization for local discontinuous Galerkin methods.Discrete Contin.Dyn.Syst.Ser.B 8, 677-693 (2007) 35.Xu, Y., Shu, C.-W.:Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-difusion and KdV equations.Comput.Methods Appl.Mech.Eng.196, 3805-3822 (2007) 36.Xu, Y., Shu, C.-W.:Local discontinuous Galerkin methods for high-order time-dependent partial differential equations.Commun.Comput.Phys.7, 1-46 (2010) 37.Xu, Y., Shu, C.-W.:Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations.SIAM J.Numer.Anal.50, 79-104 (2012) 38.Yan, J., Shu, C.-W.:A local discontinuous Galerkin method for KdV type equations.SIAM J.Numer.Anal.40, 769-791 (2002) 39.Zhang, C., Xu, Y., Xia, Y.:Local discontinuous Garlerkin methods to a dispersive system of KdV-type equations.J.Sci.Comput.86, 4 (2021) 40.Zhang, Q., Shu, C.-W.:Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws.SIAM J.Numer.Anal.42, 641-666 (2004) 41.Zhang, Q., Xia, Y.:Conservative and dissipative local discontinuous Galerkin methods for Kortewegde Vries type equations.Commun.Comput.Phys.25, 532-563 (2019) 42.Zhou, L., Xia, Y., Shu, C.-W.:Stability analysis and error estimates of arbitrary Lagrangian-Eulerian discontinuous Galerkin method coupled with Runge-Kutta time-marching for linear conservation laws.ESAIM Math.Model.Num.Anal.53, 105-144 (2019) |